References
1. Yakoubou S, Côté J-C. Assessment of a short
phylogenetic marker based on comparisons of 3'end 16S
rDNA and 5'end 16S-23S ITS nucleotide sequences on
the genus Xanthomonas. NS. 2010;2(12):1369-74.
2. Cutting SM. Bacillus probiotics. Food Microbiol.
2011;28(2):214-20.
3. Motta AS, Lorenzini DM, Brandelli A. Purification and
partial characterization of an antimicrobial peptide
produced by a novel Bacillus sp. isolated from the
Amazon Basin. Curr Microbiol. 2007;54:282-6.
4. Syrjälä P, Anttila M, Dillard K, Fossi M, Collin K,
Nylund M, et al. Causes of bovine abortion, stillbirth
and neonatal death in Finland 1999–2006. Acta Vet
Scand. 2007;49(1):1-2.
5. Sirohi P, Yadav AK, Singh NK. INHIBITORY
MECHANISM OF N-HEXANE AND DICHLOROMETHANE LEAF EXTRACTS OF CLERODENDRUM PHLOMIDIS LINN. ON FOOD BORN
PATHOGEN BACILLUS LICHENIFORMIS. Journal
of Plant Development Sciences Vol. 2019;11(9):501-10.
6. Shaheen R, Andersson MA, Apetroaie C, Schulz A,
Ehling-Schulz M, Ollilainen V-M, et al. Potential of
selected infant food formulas for production of Bacillus
cereus emetic toxin, cereulide. Int J Food Microbiol.
2006;107(3):287-94.
7. Markey B, Leonard F, Archambault M, Cullinane A,
Maguire D. Clinical veterinary microbiology e-book:
Elsevier sci; 2013.
8. DebMandal M, Mandal S, Kumar Pal N. Antibiotic
resistance prevalence and pattern in environmental
bacterial isolates. The Open Antimicrobial Agents
Journal. 2011;3(1).
9. Nieminen T, Rintaluoma N, Andersson M, Taimisto AM, Ali-Vehmas T, Seppälä A, et al. Toxinogenic
Bacillus pumilus and Bacillus licheniformis from
mastitic milk. Vet Microbiol. 2007;124(3-4):329-39.
10. Tapi A, Chollet-Imbert M, Scherens B, Jacques P. New
approach for the detection of non-ribosomal peptide
synthetase genes in Bacillus strains by polymerase chain
reaction. Applied microbiology and biotechnology.
2010;85:1521-31.
11. Xue Z, Marco ML. Milk and dairy products. Food
Microbiol (5th Ed). 2019:101-23.
12. Ostrov I, Sela N, Belausov E, Steinberg D, Shemesh M.
Adaptation of Bacillus species to dairy associated
environment facilitates their biofilm forming ability.
Food Microbiol. 2019;82:316-24.
13. Kent D, Chauhan K, Boor K, Wiedmann M, Martin N.
Spore test parameters matter: Mesophilic and
thermophilic spore counts detected in raw milk and
dairy powders differ significantly by test method. J
Dairy Sci. 2016;99(7):5180-91.
14.Rückert A, Ronimus RS, Morgan HW. A RAPD-based
survey of thermophilic bacilli in milk powders from
different countries. Int J Food Microbiol.
2004;96(3):263-72.
15. Ariznabarreta A, Gonzalo C, San Primitivo F.
Microbiological quality and somatic cell count of ewe
milk with special reference to staphylococci. J Dairy
Sci. 2002;85(6):1370-5.
16. Sadashiv S, Kaliwal B. Isolation, characterization and
antibiotic resistance of Bacillus sps. from bovine
mastitis in the region of north Karnataka, India. Int J
Curr Microbiol Appl Sci. 2014;3:360-73.
17. Adimpong DB, Sørensen KI, Thorsen L, StuerLauridsen B, Abdelgadir WS, Nielsen DS, et al.
Antimicrobial susceptibility of Bacillus strains isolated
from primary starters for African traditional bread
production and characterization of the bacitracin operon
and bacitracin biosynthesis. Appl Environ Microbiol.
2012;78(22):7903-14.
Nayeri Fasaei et al / Archives of Razi Institute, Vol. 78, No. 6 (2023) 1690-1697 1697
18. Allam NAT, Sedky D, Mira EK. The clinical impact of
antimicrobial resistance genomics in competition with
she-camels recurrent mastitis metabolomics due to
heterogeneous Bacillus licheniformis field isolates. Vet
World. 2017;10(11):1353.
19. Suliman R, Salih R. Bacterial Bovine Mastitis and
Formation of Specific antibodies in Milk and Sera,
Sudan. J Vet Med Health. 2019;3:113.
20. SALIH RRM. COMPARISON BETWEEN THE
PERCENTAGE OF INCIDENCE OF MASTITIS
CAUSED BY Bacillus spp. AND Staphylococcus spp.
IN WINTER SEASON IN KHARTOUM STATE,
SUDAN. Online J Anim Feed Res. 2015;5(4):112-6.
21. Scheldeman P, Herman L, Foster S, Heyndrickx M.
Bacillus sporothermodurans and other highly
heat‐resistant spore formers in milk. J Appl Microbiol.
2006;101(3):542-55.
22. Taylor JM, Sutherland AD, Aidoo KE, Logan NA.
Heat-stable toxin production by strains of Bacillus
cereus, Bacillus firmus, Bacillus megaterium, Bacillus
simplex and Bacillus licheniformis. FEMS
microbiology letters. 2005;242(2):313-7.
23. Nonnemann B, Lyhs U, Svennesen L, Kristensen KA,
Klaas IC, Pedersen K. Bovine mastitis bacteria resolved
by MALDI-TOF mass spectrometry. J Dairy Sci.
2019;102(3):2515-24.
24. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH,
Ehrenreich P, et al. The complete genome sequence of
Bacillus licheniformis DSM13, an organism with great
industrial potential. Microbial Physiology. 2004;
7(4):204-11.
25. Madslien E, Rønning H, Lindbäck T, Hassel B,
Andersson M, Granum P. Lichenysin is produced by
most Bacillus licheniformis strains. J Appl Micrbiol.
2013;115(4):1068-80.