References
1. Goncharova ND. Stress responsiveness of the
hypothalamic–pituitary–adrenal axis: age-related features
of the vasopressinergic regulation. Frontiers in
endocrinology. 2013;4:26.
2. Adzika GK, Machuki JOa, Shang W, Hou H, Ma
T, Wu L, et al. Pathological cardiac hypertrophy: the
synergy of adenylyl cyclases inhibition in cardiac and
Badakhshan et al / Archives of Razi Institute, Vol. 78, No. 5 (2023) 1594-1602 1601
immune cells during chronic catecholamine stress.
Journal of Molecular Medicine. 2019;97(7):897-907.
3. Nakagawa H, Matsumura T, Suzuki K, Ninomiya
C, Ishiwata T. Changes of brain monoamine levels and
physiological indexes during heat acclimation in rats.
Journal of Thermal Biology. 2016;58:15-22.
4. Mialet-Perez J, Bianchi P, Kunduzova O, Parini A.
New insights on receptor-dependent and monoamine
oxidase-dependent effects of serotonin in the heart.
Journal of neural transmission. 2007;114(6):823-7.
5. Peña-Silva RA, Miller JD, Chu Y, Heistad DD.
Serotonin produces monoamine oxidase-dependent
oxidative stress in human heart valves. American Journal
of Physiology-Heart and Circulatory Physiology.
2009;297(4):H1354-H60.
6. Gustafsson BrI, Tømmerås K, Nordrum I,
Loennechen JP, Brunsvik A, Solligård E, et al. Long-term
serotonin administration induces heart valve disease in
rats. Circulation. 2005;111(12):1517-22.
7. Elangbam CS, Job LE, Zadrozny LM, Barton JC,
Yoon LW, Gates LD, et al. 5-hydroxytryptamine (5HT)-
induced valvulopathy: compositional valvular alterations
are associated with 5HT2B receptor and 5HT transporter
transcript changes in Sprague-Dawley rats. Experimental
and Toxicologic Pathology. 2008;60(4-5):253-62.
8. Nebigil CG, Désaubry L. The role of GPCR
signaling in cardiac Epithelial to Mesenchymal
Transformation (EMT). Trends in Cardiovascular
Medicine. 2019;29(4):200-4.
9. Mialet-Perez J, Santin Y, Parini A. Monoamine
oxidase-A, serotonin and norepinephrine: synergistic
players in cardiac physiology and pathology. Journal of
Neural Transmission. 2018;125(11):1627-34.
10. Kong SW, Bodyak N, Yue P, Liu Z, Brown J,
Izumo S, et al. Genetic expression profiles during
physiological and pathological cardiac hypertrophy and
heart failure in rats. Physiological genomics.
2005;21(1):34-42.
11. Huuskonen C, Hämäläinen M, Paavonen T,
Moilanen E, Mennander A. Monoamine oxidase A
inhibition protects the myocardium after experimental
acute volume overload. Anatolian Journal of Cardiology.
2019;21(1):39.
12. Maurel A, Hernandez C, Kunduzova O, Bompart
G, Cambon C, Parini A, et al. Age-dependent increase in
hydrogen peroxide production by cardiac monoamine
oxidase A in rats. American Journal of Physiology-Heart
and Circulatory Physiology. 2003;284(4):H1460-H7.
13. Chen CY, Lin HY, Chen YW, Ko YJ, Liu YJ,
Chen YH, et al. Obesity-associated cardiac pathogenesis
in broiler breeder hens: Pathological adaption of cardiac
hypertrophy1,2. Poultry Science. 2017;96(7):2428-37.
14. Zhang J, Schmidt CJ, Lamont SJ. Transcriptome
analysis reveals potential mechanisms underlying
differential heart development in fast-and slow-growing
broilers under heat stress. BMC genomics. 2017;18(1):1-
15.
15. Brasil D, Temsah RM, Kumar K, Kumamoto H,
Takeda N, Dhalla NS. Blockade of 5-HT2A receptors by
sarpogrelate protects the heart against myocardial
infarction in rats. J Cardiovasc Pharmacol Ther.
2002;7(1):53-9.
16. Miyata K, Shimokawa H, Higo T, Yamawaki T,
Katsumata N, Kandabashi T, et al. Sarpogrelate, a
selective 5-HT2A serotonergic receptor antagonist,
inhibits serotonin-induced coronary artery spasm in a
porcine model. J Cardiovasc Pharmacol. 2000;35(2):294-
301.
17. Neri-Gómez T, Valero-Elizondo G, MansillaOlivares A, Mondragón-Herrera JA, Manjarrez-Gutiérrez
G. Immunohistochemically characterization of serotonin
reuptake transporter; 5-HT1B, 5-HT2A, 5-HT2B
receptors, and tryptophan-5-hydroxylase expression in
normal human hearts. 2018.
18. Sinh V, Ootsuka Y. Blockade of 5-HT2A
receptors inhibits emotional hyperthermia in mice. The
Journal of Physiological Sciences. 2019;69(6):1097-102.
19. Kaidonis X, Niu W, Chan AY, Kesteven S, Wu J,
Iismaa SE, et al. Adaptation to exercise-induced stress is
not dependent on cardiomyocyte α1A-adrenergic
receptors. J Mol Cell Cardiol. 2021;155:78-87.
20. Yamaguchi T, Sumida TS, Nomura S, Satoh M,
Higo T, Ito M, et al. Cardiac dopamine D1 receptor
triggers ventricular arrhythmia in chronic heart failure.
1602 Badakhshan et al / Archives of Razi Institute, Vol. 78, No. 5 (2023) 1594-1602
Nature communications. 2020;11(1):1-8.
21. Yamaguchi T, Sumida TS, Nomura S, Satoh M,
Higo T, Ito M, et al. Cardiac dopamine D1 receptor
triggers ventricular arrhythmia in chronic heart failure.
Nature Communications. 2020;11(1):4364.
22. Mendes P, Martinho R, Leite S, Maia-Moço L,
Leite-Moreira AF, Lourenço AP, et al. Chronic exercise
induces pathological left ventricular hypertrophy in
adrenaline-deficient mice. Int J Cardiol. 2018;253:113-9.
23. Wong DL, Tai T, Wong-Faull DC, Claycomb R,
Meloni EG, Myers KM, et al. Epinephrine: A short-and
long-term regulator of stress and development of illness.
Cell Mol Neurobiol. 2012;32(5):737-48.
24. Zhang DY, Anderson AS. The sympathetic
nervous system and heart failure. Cardiol Clin.
2014;32(1):33-45.
25. Cases O, Seif I, Grimsby J, Gaspar P, Chen K,
Pournin S, et al. Aggressive behavior and altered amounts
of brain serotonin and norepinephrine in mice lacking
MAOA. Science. 1995;268(5218):1763-6.
26. Sivasubramaniam S, Finch C, Rodriguez M, Mahy
N, Billett E. A comparative study of the expression of
monoamine oxidase-A and-B mRNA and protein in nonCNS human tissues. Cell Tissue Res. 2003;313(3):291-
300.
27. Lairez O, Calise D, Bianchi P, Ordener C, SpreuxVaroquaux O, Guilbeau-Frugier C, et al. Genetic deletion
of MAO-A promotes serotonin-dependent ventricular
hypertrophy by pressure overload. J Mol Cell Cardiol.
2009;46(4):587-95.
28. Jeong S-J, Park J-G, Oh GT. Peroxiredoxins as
Potential Targets for Cardiovascular Disease.
Antioxidants [Internet]. 2021; 10(8).