- Ahiaga-Dagbui, D. D., and Smith, S. D. 2012. Neural networks for modelling the final target cost of water projects.
- Ahmadaali, K., Liaghat, A., Heydari, N., and Bozorg-Haddad, O. 2013. Application of artificial neural network and adaptive neural-based fuzzy inference system techniques in estimating of virtual water. International Journal of Computer Application, 76: 12-19.
- Alshahethi, A. A. A., and Radhika, K. L. 2018. Estimating the Final Cost of Construction Project Using Neural Networks: A Case of Yemen Construction Projects. International Journal for Research in Applied Science & Engineering Technology, 6(11): 2141-2151.
- Altarabichi, M. G., Nowaczyk, S., Pashami, S., and Mashhadi, P. S. 2023. Fast Genetic Algorithm for feature selection—A qualitative approximation approach. Expert Systems with Applications, 211: 118528.
- Alweshah, M. 2021. Solving feature selection problems by combining mutation and crossover operations with the monarch butterfly optimization algorithm. Applied Intelligence, 51(6): 4058-4081.
- Arora, S., and Mishra, N. 2017. Software cost estimation using single layer artificial neural network. International Journal of Advanced Engineering Research and Science, 4(9): 237250.
- Arora, S., and Mishra, N. 2018. Software cost estimation using artificial neural network. In Soft Computing: Theories and Applications (pp. 51-58). Springer, Singapore.
- Awad, M., and Khanna, R. 2015. Support vector regression. In efficient learning machines (pp. 67-80). Apress, Berkeley, CA.
- Babaei, M., Rashidi-baqhi, A., and Rashidi, M. 2022. Estimating Project Cost under Uncertainty Using Universal Generating Function Method. Journal of Construction Engineering and Management, 148(2): 04021194.
- Chandanshive, V., and Kambekar, A. R. 2019. Estimation of building construction cost using artificial neural networks. Journal of Soft Computing in Civil Engineering, 3(1): 91-107.
- Chandrashekar, G., and Sahin, F. 2014. A survey on feature selection methods. Computers & Electrical Engineering, 40(1): 16-28.
- Cheng, M. Y., Tsai, H. C., and Sudjono, E. 2010. Conceptual cost estimates using evolutionary fuzzy hybrid neural network for projects in construction industry. Expert Systems with Applications, 37(6): 4224-4231.
- Cortes, C., and Vapnik, V. 1995. Support-vector networks. Machine learning, 20(3): 273-297.
- Drenthe, N. T., Zandbergen, B. T. C., Curran, R., and Van Pelt, M. O. 2019. Cost estimating of commercial smallsat launch vehicles. Acta Astronautica, 155: 160-169.
- Elfaki, A. O., Alatawi, S., and Abushandi, E. 2014. Using intelligent techniques in construction project cost estimation: 10-year survey. Advances in Civil Engineering, 2014: 1-11.
- Elhag, T. M. S., and Boussabaine, A. H. 1998. An artificial neural system for cost estimation of construction projects. In 14th Annual ARCOM Conference (Vol. 1, pp. 219-226). University of Reading: Association of Researchers in Construction Management.
- Ghaddar, B., and Naoum-Sawaya, J. 2018. High dimensional data classification and feature selection using support vector machines. European Journal of Operational Research, 265(3): 993-1004.
- Ghaemi, M., and Feizi-Derakhshi, M. R. 2016. Feature selection using forest optimization algorithm. Pattern Recognition, 60: 121-129.
- Gransberg, D. D., and Rueda, J. A. 2020. Construction equipment management for engineers, estimators, and owners. CRC Press.
- Kashan, A. H. 2014. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Applied Soft Computing, 16: 171-200.
- Kiani, A., and Shaker, M. 2022. Evaluating the Effectiveness of Pressurized Irrigation Systems in Iran. Water Management in Agriculture, 8(2): 167-182. (In Persian)
- Kim, G. H., Shin, J. M., Kim, S., and Shin, Y. 2013. Comparison of school building construction costs estimation methods using regression analysis, neural network, and support vector machine. Journal of Building Construction and Planning Research, 1(1): 1-7.
- Lester, E. I. A. 2017. Estimating. In: Project management, planning and control. The Netherlands: Elsevier, 61–65.
- Liu, J., Lin, Y., Lin, M., Wu, S., and Zhang, J. 2017. Feature selection based on quality of information. Neurocomputing, 225: 11-22.
- Masoudi-Sobhanzadeh, Y., and Motieghader, H. 2016. World Competitive Contests (WCC) algorithm: A novel intelligent optimization algorithm for biological and non-biological problems. Informatics in Medicine Unlocked, 3: 15-28.
- Masoudi-Sobhanzadeh, Y., Motieghader, H., & Masoudi-Nejad, A. 2019. FeatureSelect: a software for feature selection based on machine learning approaches. BMC Bioinformatics, 20(1): 1-17.
- Matel, E., Vahdatikhaki, F., Hosseinyalamdary, S., Evers, T., and Voordijk, H. 2022. An artificial neural network approach for cost estimation of engineering services. International Journal of Construction Management, 22(7): 1274-1287.
- Metin, S. K. 2018. Feature selection in multiword expression recognition. Expert Systems with Applications, 92: 106-123.
- Mevellec, P. 2021. Cost systems: A new approach. Academia Letters, 2.
- Miao, J., and Niu, L. 2016. A survey on feature selection. Procedia Computer Science, 91: 919-926.
- Nalbandan, R. B., Delavar, M., Abbasi, H., and Zaghiyan, M. R. 2023. Model-based water footprint accounting framework to evaluate new water management policies. Journal of Cleaner Production, 382: 135220.
- Norvig, P. R., and Intelligence, S. A. 2002. A modern approach. Prentice Hall Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An ontology-based adaptive personalized e-learning system, assisted by software agents on cloud storage. Knowledge-Based Systems, 90: 33-48.
- Omotayo, T., Bankole, A., and Olubunmi Olanipekun, A. 2020. An artificial neural network approach to predicting most applicable post-contract cost controlling techniques in construction projects. Applied Sciences, 10(15): 5171-5195.
- Panday, D., de Amorim, R. C., and Lane, P. 2018. Feature weighting as a tool for unsupervised feature selection. Information processing letters, 129: 44-52.
- Pazoki, M., Yadav, A., and Abdelaziz, A. Y. 2020. Pattern-recognition methods for decision-making in protection of transmission lines. In Decision making applications in modern power systems (pp. 441-472). Academic Press.
- Pourgholam-Amiji, M., Ahmadaali, K., and Liaghat, A. 2021a. Sensitivity Analysis of Parameters Affecting the Early Cost of Drip Irrigation Systems Using Meta-Heuristic Algorithms. Iranian Journal of Irrigation & Drainage, 15(4): 737-756. (In Persian)
- Pourgholam-Amiji, M., Liaghat, A., and Ahmadaali, K. 2021b. Early Stage Cost Modeling of Drip Irrigation Systems. Irrigation and Drainage Structures Engineering Research, 22(82): 1-22. (In Persian)
- Rahmaninia, M., and Moradi, P. 2018. OSFSMI: online stream feature selection method based on mutual information. Applied Soft Computing, 68: 733-746.
- Rastegar, R., Rahmati, M., and Meybodi, M. R. 2005. A clustering algorithm using cellular learning automata based evolutionary algorithm. In Adaptive and Natural Computing Algorithms (pp. 144-150). Springer, Vienna.
- Roxas, C. L. C., and Ongpeng, J. M. C. 2014. An artificial neural network approach to structural cost estimation of building projects in the Philippines. DLSU Res. Congr.
- Schubert, A. L., Hagemann, D., Voss, A., and Bergmann, K. 2017. Evaluating the model fit of diffusion models with the root mean square error of approximation. Journal of Mathematical Psychology, 77: 29-45.
- Sharma, A., Jain, A., Gupta, P., and Chowdary, V. 2020. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9: 4843-4873.
- Sheikhpour, R., Sarram, M. A., Gharaghani, S., and Chahooki, M. A. Z. 2017. A survey on semi-supervised feature selection methods. Pattern Recognition, 64: 141-158.
- Solorio-Fernández, S., Carrasco-Ochoa, J. A., and Martínez-Trinidad, J. F. (2020): A review of unsupervised feature selection methods. Artificial Intelligence Review, 53(2): 907-948.
- Talukdar, S., Naikoo, M. W., Mallick, J., Praveen, B., Sharma, P., Islam, A. R. M. T. ... and Rahman, A. 2022. Coupling geographic information system integrated fuzzy logic-analytical hierarchy process with global and machine learning based sensitivity analysis for agricultural suitability mapping. Agricultural Systems, 196: 103343.
- Teksin, S., Azginoglu, N., and Akansu, S. O. 2022. Structure estimation of vertical axis wind turbine using artificial neural network. Alexandria Engineering Journal, 61(1): 305-314.
- Thakkar, A., and Lohiya, R. 2023. Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System. Information Fusion, 90: 353-363.
- Venkatachalam, A. R. 1993. Software cost estimation using artificial neural networks. In Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan) (Vol. 1, pp. 987-990). IEEE.
- Waliulu, Y. E. P. R., and Adi, T. J. W. 2022. A system dynamic thinking for modeling infrastructure project duration acceleration. Procedia Computer Science, 197: 420-427.
- Winston, P. H. 1992. Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc.
- Yadav, R., Vyas, M., Vyas, V., and Agrawal, S. 2016. Cost estimation model (CEM) for residential building using artificial neural network. International Journal of Engineering Research & Technology (IJERT), 5(1): 430-432.
|