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Abstract 

High-throughput sequencing of intestinal microbial DNA using the Illumina platform 

was implemented to clarify the structure and function of intestinal flora and antibiotic 

resistance genes (ARGs) abundances in yellow catfish (Pelteobagrus fulvidraco). 

Species annotation and gene function analysis were performed on the metagenomic 

sequencing data. Intestinal bacteria were isolated and identified by 16sRNA. The results 

showed that intestinal flora was highly similar in the three P. fulvidraco. A total of 37 

phyla and 788 genera of intestinal bacteria were identified. Proteobacteria, Streptomyces, 

and Clostridium are the dominant flora with the average relative abundance of 25.71%, 

14.75%, and 5.15%, respectively. Six strains were successfully isolated and identified in 

our experiment. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 

showed that the primary metabolic pathway is dominated by metabolism and organic 

systems, while the secondary metabolic pathway is dominated by sensory system, 

carbohydrate metabolism, replication, and repair. In addition, 499 ARGs of 37 resistance 

types were identified based on Antibiotic Resistance Genes Database. Tetracycline, 

polypeptide, macrolide, glycopeptide, and multiple drug resistance were highly 

abundant. The intestinal ARGs of P. fulvidraco were macB, bcrA, and evgS. In general, 

rich bacterial diversity and many types of ARG were detected in the intestine of P. 

fulvidraco. Moreover, probiotics are potentially a good alternative to antibiotic abuse in 

aquaculture industry. Therefore, analysis of intestinal flora, intestinal flora ARGs and 

gene functions is beneficial for the artificial farming of P. fulvidraco. 
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Introduction  

Pelteobagrus fulvidraco (Siluriformes: 

Bagridae), commonly known as the 

yellow catfish, is an important economic 

fish with a unique flavor of its meat, high 

nutrition, and fewer fishbones in China 

(Jee et al., 2009). The composition and 

structure of the intestinal microbial 

community of P. fulvidraco are affected 

by farming scale, feeding conditions, 

and water quality. Intestinal 

microorganisms play a key role in 

healthy fish growth. Intestinal 

microorganisms promoted their hosts' 

growth, development, and metabolism at 

appropriate concentrations. However, 

intestinal microorganisms caused 

disease when their concentrations are 

not held in check (Ringo et al., 2016). 

Probiotics promoted the growth, 

metabolism, and maintenance of a 

balanced intestinal flora of their hosts. 

For example, Bacillus pumilus and B. 

licheniformis enhanced the immunity 

and disease resistance in tilapia (Aly et 

al., 2008), and B. subtilis inhibited 

growth of harmful microorganisms such 

as Vibrio, Pseudomonas, and 

Aeromonas (Olmos et al., 2020). 

Bacterial diseases have deleterious 

effects on the artificial breeding of P. 

fulvidraco, and these negative effects are 

exacerbated by environmental 

deterioration, intensive cultivation, and 

improper management. These pathogens 

caused hyperemia, bleeding, festering, 

abdominal dropsy, and even caused 

death in P. fulvidraco (Zhang et al., 

2014). Many pathogens such as A. 

hydrophila also caused zoonotic 

diseases. Antibiotics are widely used in 

aquaculture to control the spread of 

disease and protect animal health 

(Muziasari et al., 2016). Approximately 

75% of antibiotics cannot be absorbed in 

humans and animals (Chee-Sanford et 

al., 2009). Antibiotic residues such as 

norfloxacin, ciprofloxacin and 

enrofloxacin were detected in various 

fish and other aquatic products (He et al., 

2012; Chen et al., 2015). The banned 

antibiotic chloramphenicol was detected 

in carp and silver carp muscles (Lu et al., 

2009). Excessive exposure to antibiotics 

resulted in increases in the abundance of 

various antibiotic resistance genes 

(ARGs) in bacteria, and high antibiotic 

exposure caused multiple drug 

resistance in fish and increase the 

difficulty of disease control and 

prevention. Several experiments showed 

that the main pathogens were resistant to 

multiple drugs in P. fulvidraco (Jee et 

al., 2009; Quinn and Stevenson, 2012). 

Diverse bacterial pathogens and multiple 

drug resistance of bacteria negatively 

affected artificial farming of P. 

fulvidraco and had deleterious 

ecological effects. Probiotics are a 

promising alternative to antibiotics that 

promote intestinal flora balance and 

eliminate harmful pathogenic 

microorganisms. Research showed they 

colonized in intestines of fish in-vivo 

(Kuebutornye et al., 2020). Thus, non-

toxic probiotics are safe and pollution-

free for enhancing fish intestinal 

microflora. Additional research is 

needed to improve the efficiency of 

probiotics to promote growth, 

metabolism, and intestinal health in fish.  
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Traditional culture and 16S rDNA 

technology are used to study the 

intestinal microbes of P. fulvidraco (Wu 

et al., 2010). However, only cultivable 

microorganisms identified in vitro, and 

intestinal ARGs remain unexplored in P. 

fulvidraco. Here, metagenomic analysis 

was applied to clarify the composition 

and function of the intestinal flora of P. 

fulvidraco. We aimed to identify 

uncultured microorganisms and 

determine the abundances and types of 

ARGs in P. fulvidraco. We identified 

several novel ARGs in the microbial 

communities of P. fulvidraco. 

Macrogenomics provided a theoretical 

basis for the rational use of antibiotics in 

artificially farming of P. fulvidraco 

(Blair et al., 2015). 

 

Materials and methods  

Fish samples 

Three healthy P. fulvidraco individuals 

were purchased from the Huimin 

Supermarket in Old Chaoyang Village, 

Huaxi District, Guiyang City, Guizhou, 

China. P. fulvidraco individuals were 

stored on ice. After 30 min, individuals 

were washed with 75% alcohol for 30 s, 

followed by sterilized ultrapure water, 

and then were dissected. The intestinal 

contents were removed and placed in 

sterilized centrifuge tubes. The intestinal 

contents were sampled using Omega 

Mag-Bind Soil DNA Kit (Shanghai 

Yuanmu Biological Co., Ltd.), and total 

DNA was extracted according to the kit 

instructions and stored in a refrigerator 

at -80°C for subsequent use. Illumina 

sequencing and library construction 

were performed by Shanghai Parsono 

Biological Company. 

 

Metagenomic sequencing and analysis  

Evaluation of sample quality  

Paired-end libraries were constructed 

and sequenced using the Illumina 

NovaSeq/HiSeq high-throughput 

sequencing platform. Quality of raw data 

generated by sequencing was evaluated 

by FastQC (Gaud et al., 2021). A 

sequencing machine was used to screen 

and filter raw data.  

 

Species annotation  

The Kraken2 (Wood and Salzberg, 

2014) tool was used to annotate non-

spliced sequences to species. The 

BLASTN tool was used to annotate 

spliced sequences to species. 

Specifically, BLASTN searches of 

contig sequences against the nucleotide 

(nt) database of the National Center for 

Biotechnology Information (NCBI) 

were conducted. Species annotation 

information of target sequences was 

analyzed using Blast2lca software 

(Huson et al., 2007). The species 

abundance table was generated by 

integrating the species abundance 

information from each sample. 

 

Gene prediction and functional 

annotation  

The gene sequence files, protein 

sequence files, gene transfer format 

files, and general feature format files for 

the contigs were obtained using 

MetaGeneMark (Zhu et al., 2010) web 

tools 

(http://exon.gatech.edu/GeneMark/). 

http://exon.gatech.edu/GeneMark/
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Redundant sets of data were removed 

using MMseqs2 (Steinegger and Söding, 

2017) software. The non-redundant set 

of protein sequences was compared 

against the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Kanehisa 

et al., 2022) database 

(http://www.genome.jp/kegg/) and the 

EggNOG (Buchfink et al., 2015) 

database (http://eggnog5.embl.de/), and 

the functions of genes were analyzed. 

 

Annotation of ARGs  

The annotation information of ARGs 

was obtained via comparison of the set 

of sequences against the Antibiotic 

Resistance Genes Database (ARDB). 

 

Verification of the sequencing results  

To verify the accuracy of the 

metagenomic sequencing data, we 

obtained random samples of P. 

fulvidraco from the same growing 

environment to isolate, culture, and 

purify intestinal bacteria. DNA was 

extracted for 16S rRNA amplification 

and sequencing. The primers of the 16S 

rRNA: 27F, 

5’AGAGTTTGATCATGGCTCAG3’; 

1492R, 5’GGTT 

ACCTTGTTACGACTT3’. BLAST 

searches were then conducted against 

the NCBI database. 

 

Results 

Assessment of sample quality 

The total number of reads of the three P. 

fulvidraco samples was 74,683,642, 

73,349,040, and 71,207,190. The total 

number of bases in these three samples 

(1, 2, and 3) was 11,218,648,324 bp, 

11,018,392,684 bp, and 10,701,244,722 

bp, respectively. The proportion of bases 

with an accuracy of 99% and 99.9% out 

of total bases was greater than 95% and 

90%, respectively (Table 1).  

 

 

Table 1: Data on the raw sequences.  

Sample 
Total number 

of reads  

Total number of 

bases (bp) 
N (%) GC (%) Q20 (%) Q30 (%) 

Sample-1 74,683,642 11,218,648,324 0.00033 39.90 95.79 90.63 

Sample-2 73,349,040 11,018,392,684 0.00032 39.86 95.92 90.92 

Sample-3 71,207,190 10,701,244,722 0.0004 39.84 95.85 90.65 

Notes: In the table, N (%) is the percentage of ambiguous bases in total bases; GC (%) is the percentage 

GC content (i.e., the sum of G bases and C bases as a percentage of the total bases); Q20 (%) and Q30 (%) 

are the percentages of bases with 99% and 99.9% accuracy, respectively. 

 

The number of effective sequences was 

greater than 97% of all sequences; the 

total number of effective bases in the 

three samples (1, 2, and 3) was 

10,940,801,780 bp, 10,750,309,933 bp, 

and 10,441,115,363 bp, respectively 

(Table 2). The total number of species in 

the intestinal flora of the three samples 

(1, 2, and 3) according to the Chao1 (a 

nonparametric method for estimating the 

number of species in a community) and 

ACE indices were 22, 6, and 44, 

respectively. The Simpson index values 

were 0.852439364, 0.740813149, and 

0.799409563, and the Shannon index 

values were 3.467284216, 2.236238705, 

http://www.genome.jp/kegg/
http://eggnog5.embl.de/
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and 3.0967324, respectively (Table 3). 

This indicates that our sampling was 

sufficient and our data are robust. The  

species accumulation curve plateaued at 

higher numbers of samples, indicating 

that a total number of species will no 

longer increase significantly with the 

addition of new samples (Fig. 1). 

 

Table 2: Statistics of the valid sequence data. 

Sample 
Library 

name 

Proportion of effective 

sequences (%) 

Total number of effective 

bases (bp) 

Proportion of 

effective bases (%) 

Sample-1 SPE 97.67 10,940,801,780 97.52 

Sample-2 SPE 97.73 10,750,309,933 97.57 

Sample-3 SPE 97.74 10,441,115,363 97.57 

 

 

Table 3: Alpha diversity indices. 

Sample Chao1 index ACE index Shannon index Simpson index 

Sample-1 22 22 3.467284216 0.852439364 

Sample-2 6 6 2.236238705 0.740813149 

Sample-3 44 44 3.0967324 0.799409563 

Notes: Chao1 richness estimator: estimates the number of species actually present in the flora by counting 

rare species detected only once and twice in the flora. The ACE richness estimator: defaults to include 

species with a sequence size below 10 to estimate the number of species actually present in the flora. 

Shannon diversity index: comprehensively considers the richness and evenness of the flora, while Simpson 

index is more sensitive to evenness and dominant species in the flora. 

 

 
Figure 1: Species accumulation curve. 
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Species composition of the intestinal 

flora 

We analyzed the relative abundances of 

bacteria with an average relative 

abundance greater than 1% in the 

samples. The four most common phyla 

detected were Proteobacteria (25.71%), 

Actinomycetes (24.62%), thick-walled 

fungi (21.78%), and Bacteroidetes 

(10.09%) (Fig. 2).  

 
Figure 2: The relative abundances of the dominant phyla in each sample. 

 

Twelve of the most common genera 

were Streptomyces (14.75%), 

Clostridium (5.15%), uncultured 

bacteria (3.55%), Gordonella (2.24%), 

Bacillus (2.70%), Pseudomonas 

(2.35%), Sinomonas (2.27%), Yersinia 

(23.9%), Acinetobacter (2.04%), 

Streptococcus (1.51%), Clostridium 

(1.36%), and Aeromonas (1.02%). 

Mycoplasma average relative abundance 

was 2.12% (Fig. 3). The most common 

species were Streptomyces (1.53%), 

Yersinia (0.87%), Pseudomonas 

(0.87%), Bacillus cereus (0.74%), 

Marseilla (0.39%), and Gordonia 

HY186 (0.34%). Probiotics comprised 

approximately 30% of the most common 

bacteria, and pathogenic bacteria 

comprised approximately 5% of the 

most common bacteria (Fig. 4). Some 

variation was observed in the 

abundances of phyla, genera, and 

species among samples. Analysis of the 

association network diagram revealed 

that Bacteroides, Proteobacteria, and 

Fusobacterium were dominant bacteria. 

These three bacteria were most closely 

related to other bacteria. Fusobacterium 

had a positive effect on the abundance of 

other bacteria (Fig. 5). 
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Figure 3: The relative abundances of the most common genera in each sample. 

 

 

 
Figure 4: Relative abundances of the most common intestinal microbial species in each sample. 
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Figure 5: Association network of the most common intestinal microbial species. Each node 

corresponds to the dominant genus; red lines indicate positive correlations, and green lines 

indicate negative correlations. Node size is positively correlated with the average relative 

abundance of species.  
 

Functional analysis of the intestinal 

flora 

Primary metabolic pathways were 

detected according to the KEGG 

pathway: cellular processes, 

environmental information processes, 

gene information processes, human 

diseases, and metabolic and organic 

systems. The metabolic and organic 

systems were the most abundant. A total 

of 38 secondary metabolic pathways 

were identified according to KEGG 

pathway. The three most abundant 

secondary metabolic pathways were the 

sensory system, carbohydrate 

metabolism, and replication and repair, 

and their relative abundances were 

27.16%, 8.56%, and 8.96%, 

respectively. The second most abundant 

secondary metabolic pathways were 

vitamin metabolism, amino acid 

metabolism, other amino acid 

metabolism, polysaccharide synthesis 

and metabolism, and nucleotide 

metabolism. Cluster analysis revealed 

high abundances of cell growth and 

death, nucleotide metabolism, 

terpenoids and polyketides metabolism, 
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drug inhibition, membrane transport, 

prokaryotic cell communication, 

secondary substance biodegradation and 

metabolism, and toxic substance 

biodegradation and metabolism, 

suggesting that the intestinal flora of P. 

fulvidraco was primarily involved in the 

nerve conduction of the neurosensory 

system. 

Sensory perception of the external 

environment (via, for example, hearing, 

vision, and tactile senses) aids host 

metabolism, energy acquisition, and 

nutrient absorption. It also has positive 

effects on carbohydrate digestion and 

amino acid metabolism (Fig. 6). 

 
Figure 6: Relative abundances of the KEGG pathways in each sample 

 

Annotation of intestinal ARGs 

The drug resistance of the intestinal 

microorganisms in P. fulvidraco is 

mainly conferred by the ARGs of 

intestinal bacteria. A total of 21,482 

resistance genes, including 888 ARGs 

and 35 types of ARGs, were annotated 

through comparison against the ARDB. 

ARGs with a relative abundance greater 

than 1% are shown in Table 4. The most 

common types of ARGs were multiple 

drug resistance, polypeptide, 

glycopeptide, tetracycline, and 

macrolide ARGs, and their relative 

abundances were 36.44%, 9.82%, 

9.68%, 9.11%, and 8.00%, respectively 

(Fig. 7). The most common ARG was 

macB,that had a relative abundance of 

6.28%. The second most common ARGs 

were RanA, bcrA, and evgS, and their 



1439 Liu et al., Metagenomic analysis of the intestinal flora and antibiotic resistance genes of yellow … 

 

relative abundances were 3.14%, 3.05%, 

and 2.67%, respectively. Drug resistance 

was mainly mediated by target change 

and efflux pumps. Multiple drug 

resistance, glycopeptide, macrolide, 

polypeptide, tetracycline,  and 

fluoroquinolone ARGs are common in 

P. fulvidraco. 

 

 

Table 4: The most common ARGs detected in the three samples of P. Fulvidraco. 

ARG Quantity Antibiotic resistance type Resistance mechanism 

adeL 238 Fluoroquinolones; tetracyclines efflux 

arlR 319 Fluoroquinolones; acridine pigments efflux 

arlS 367 Fluoroquinolones; acridine pigments efflux 

bcrA 656 Polypeptide efflux 

cdeA 424 Fluoroquinolones; acridine pigments efflux 

efrA 227 
Macrocyclic esters; fluoroquinolones; 

welfare class 
efflux 

evgS 574 
Macrocyclic esters; fluoroquinolones; 

penicillin; tetracyclines 
efflux 

macB 1348 Macrocyclic esters efflux 

TxR 335 Tetracyclines efflux 

msbA 311 Nitroimidazoles efflux 

tetA(58) 487 Tetracyclines efflux 

mtrA 213 Macrocyclic esters; penicillin efflux 

PmrF 228 Polypeptide target alteration 

RanA 675 - efflux 

Note: Indicates that the antibiotic type was not annotated 

 
Figure 7: Total number of each type of ARG identified in the three samples of P. Fulvidraco. 

 

Probiotics were collected from the 

microbial samples. Several probiotics 

are potentially a good alternative for six 

types of common antibiotics in the 

intestines of P. fulvidraco (Sup Table 

S1). The six most common antibiotics in 

the intestine had toxic side effects on the 

nervous system and digestive systems in 

P. fulvidraco. Bacillus, lactic acid 

bacteria, and Clostridium prevent 

bacterial diseases, promote a balanced 

intestinal flora, eliminate harmful 
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bacteria, enhance the growth of 

beneficial bacteria, and increase 

immunity and growth performance. 

 

 

 

 

Supplementary Table S1: Probiotics that could be used as replacements for various types of 

antibiotics 

Antibiotic Toxic side effects Probiotics Probiotic effect 

polypeptide 
Neurotoxicity, kidney 

toxicity 

Bifidobacterium, 

Lactobacillus, 

Promoting the growth of 

probiotics that 

inhibit the growth of harmful 

bacteria 
    

glycopeptide 
Kidney and ear toxicity, 

prone to dependency 

Bacillus, 

Lactobacillus 

Promoting digestion and 

absorption and enhancing 

immunity 
    

tetracycline 

Digestive tract 

reactions, 

liver and kidney 

damage, abnormal bone 

development, allergies, 

microbial imbalance 

Bacillus, 

Streptomyces, 

Lactobacillus, 

Clostridium 

butyricum 

Promoting growth, controlling 

the growth of fungi and bacteria 

    

macrolide 

Digestive tract 

symptoms,  

hepatotoxicity, allergic 

reactions, cardiotoxicity 

Bacillus, 

Lactobacillus 

Promoting digestion 

improving intestinal structure, 

inhibiting the growth of 

pathogens 
    

fluoroquinolone 

Central nervous system 

toxicity, gastrointestinal 

reaction, photosensitive 

reaction 

Bacillus, 

Lactobacillus, 

Bifidobacterium 

Clostridium 

butyricum 

Inhibiting enteritis, 

preventing bacterial diseases 

    

penicillin 

Gastrointestinal, central 

nervous system, and 

allergic reactions 

Bifidobacterium, 

compound bacteria 

Bacillus 

Inhibiting enteritis and the 

growth of harmful pathogenic 

bacteria, 

improving immunity 

 

Verification of the sequencing results 

We isolated six bacteria, Aeromonas 

versonii, Aeromonas caviae, Bacillus 

subtilis, Aeromonas hydrophila, and 

Streptococcus, and the similarity was 

100%, 99.79%, 99.93%, 99.87%, 

99.65%, and 99.77%, respectively (Fig. 

8). 

 

 

 
Figure 8: Results of the amplification of the 16S 

rRNA gene of intestinal bacteria in P. 

fulvidracoM: D2000, 1: Aeromonas 

versonii, 2: Aeromonas caviae, 3: 

Bacillus subtilis, 4: Aeromonas 

hydrophila, 5: Streptococcus, and 6: 

Bacillus cereus. 
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Discussion 

In this study, the most common 

intestinal microbes were Proteobacteria, 

thick-walled fungi, Clostridium, and 

Bacteroidetes in P. fulvidraco, and these 

findings are consistent with the results of 

a previous study that used traditional 

sequencing and 16S rDNA data (Wu et 

al., 2010). Thus, our findings confirm 

the utility of metagenomic sequencing. 

Proteobacteria and Firmicutes were the 

most common phyla. Proteobacteria are 

sensitive to environmental factors (Faith 

et al., 2013) and contain a large number 

of pathogenic bacteria. Moreover, an 

increased abundance of Proteobacteria 

causes various diseases (Caporaso et al., 

2011) and an imbalance in intestinal 

flora (Shin et al., 2015). Thick-walled 

bacteria can promote fat absorption and 

lipid droplet formation in the intestinal 

epithelium and liver (Semova et al., 

2012). Streptomyces, Clostridium, 

Bacillus, Aeromonas, and Mycoplasma 

were the most common genera identified 

in our study. Streptomyces produced 

large numbers of antibiotics that prevent 

animal diseases and promote growth and 

development of animals (Li et al., 2017). 

Clostridium and Bacillus, non-

pathogenic are often acted as antibiotics. 

For example, Bacillus promotes growth 

and enhances immunity. Clostridium 

butyricum inhibits the growth of C. 

perfringens, E. coli, and S. aureus. A 

high abundance of Aeromonas is 

probably due to intestinal dysfunction 

(Manna et al., 2013) or reflect fish 

adaptation to the environment (Perez-

Sanchez et al., 2014). Mycoplasma, an 

important zoonotic bacterium, could 

cause pneumonia and respiratory 

inflammation (Volokhov et al., 2012). 

The most abundant bacteria in the 

intestine are probiotics at the species 

level. For example, Gordonella 

degraded alkanes (Martinkova et al., 

2009). Marseillae tolerates heavy metals 

and promotes phosphorus solubilization 

and phenanthrene degradation (Lee et 

al., 2017). Pseudonocardia, an 

agriculturally important bacterial genus, 

improves water environment quality and 

promotes the healthy growth of aquatic 

products (Qin et al., 2008). B. cereus is 

a conditional pathogen, and non-

pathogenic strains inhibit disease (Hong 

et al., 2016). Yersinia is a common 

pathogen in freshwater fish and it causes 

zoonoses (Tan et al., 2015).  

We isolated and identified six strains, 

and three of them were dominant strains 

in P. fulvidraco by metagenomic 

analysis. These findings confirm the 

utility of metagenomic technology for 

obtaining large amounts of 

bioinformatics data. Analysis of phyla, 

genera, and species revealed that the 

most common non-pathogenic bacteria 

mediated nutrient absorption and 

metabolism, enhanced immunity, and 

promoted growth and development in P. 

fulvidraco. Moreover, many of these 

bacteria enhance the resistance of 

animals to disease. Pathogenic bacteria 

caused an imbalance of intestinal 

homeostasis, inflammation, and diseases 

in the intestine (Shanahan, 2010). 

Pathogenic bacteria were affected by 

various environmental factors and 

microbial interactions (Smith et al., 

2007). This finding indicated that the 
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data is more comprehensive via 

metagenomic technology. In sum, the 

intestinal flora plays a key role in 

promoting growth and development in 

P. fulvidraco. Metagenomic 

technologies also identified important 

genes. However, more research is 

needed to elucidate environmental 

influences on these genes.  

We found that macB, a macrolide 

resistance gene, was the most abundant 

ARG in the intestinal microbes of P. 

fulvidraco. This gene has been detected 

in river water (Stoll et al., 2012). The 

ARGs of intestinal microorganisms of 

carp revealed seven types of ARGs 

including quinolone, sulfonamide, 

aminoglycoside, macrolide, 

chloramphenicol, tetracycline, and β-

lactam ARGs (Yuan et al., 2019). We 

also identified previously unreported 

ARGs with highly abundant such as 

TxR, msbA, and PmrF genes in P. 

fulvidraco. The difficulty of cultivating 

drug-resistant bacteria with these genes 

and expressing resistance by a single 

resistance gene, and the undetectability 

of conventional technique explains the 

lack of relevant studies. A large number 

of multiple drug resistance ARGs were 

detected in P. fulvidraco, and it indicated 

that many antibiotics have been used in 

the breeding of P. fulvidraco. Our study 

revealed that the resistance of most 

intestinal bacteria to antibiotics is 

achieved via efflux pumps in P. 

fulvidraco. Among tetracycline ARGs, 

74% of the genes were related to the 

efflux pump mechanism. For example, 

tetA, tetY, and tetZ encode efflux pump 

proteins that promoted tetracycline 

excretion from cells as well as reduced 

intracellular tetracycline and toxicity to 

themselves, but they increase antibiotic 

resistance (Liu et al., 2018). The efflux 

pump proteins also pump other 

antibiotics outside the cells. Genes 

encoding efflux pump proteins are often 

located in transposons, integrons, or 

plasmids. And they are usually 

connected to other ARGs that enhances 

multi-drug resistance in microorganisms 

(Calero-Cáceres et al., 2019). Multiple 

drug resistance genes integrated into 

pathogenic bacteria are spread into man 

through the food chain. The persistence, 

migration, transport, and spread of 

bacteria is probably more harmful 

compared with antibiotic residues 

(Murray et al., 2018). Probiotics have 

been proved to be a good alternative for 

the antibiotic abuse in aquaculture 

industry. Probiotic additives provide an 

efficient and green ways compared to 

antibiotics to exert antimicrobial 

properties. 

Intestinal microorganisms are closely 

associated with host health. In our study, 

intestinal microbes were investigated by 

metagenomic technology in P. 

fulvidraco. Identification of the ARG of 

intestinal flora pathogens provided 

insight into the pathogenic mechanisms 

of bacteria and clinical screening of 

drugs. The analysis of intestinal flora, 

intestinal microorganisms ARGs and 

gene function is beneficial for the 

artificial farming of P. fulvidraco. 
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