Aditian, A., Kubota, T., Shinohara, Y., 2018. Comparison of GIS-based landslide susceptibilitymodels using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318, 101-111.
Ajim Ali, S., Parvin, F., Vojteková, J., Costache, R., Thi, N., Linh, T., Pham, Q.B., Vojtek, M., Gigović, L., Ahmad, A., Ghorbani, M.A., 2021. GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci. Front. 12(2), 857-876.
Ansari, F., Blurchi, M.C., 1996. Landslides of Ardabile Province, Iran. Geological Survey of Iran, Iran (in Persian).
Ayalew L., Yamagishi, H., Marui, H., Kanno, T., 2005. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. J. Eng. Geol. 81, 432-445.
Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65, 15-31.
Barella, C.F., Sobreira, F.G., Zêzere, J.L., 2019. A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas Gerais state, Brazil. Bull. Eng. Geol. Environ. 78, 3205-3221.
Bravo-López, E., Fernández Del Castillo, T., Sellers, C., Delgado-García, J., 2022. Landslide susceptibility mapping of landslides with artificial neural networks: multi-approach analysis of backpropagation algorithm applying the neuralnet package in Cuenca, Ecuador. J. Remote Sens. 14(3495), 1-30.
Chen, W.W., Zhang, S., 2021. GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. Catena 203, 105344.
Chen, X., Chen, W., 2021. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena 196, 104833.
Davis, J.C., Ohlmacher, G.C., 2002. Landslide hazard prediction using generalized logistic regression. Proceedings of 8th Annual Conference of the International Association for Mathematical Geology, Berlin, Germany.
Demir, G., 2018. Landslide susceptibility mapping by using statistical analysis in the north Anatolian fault zone (NAFZ) on the northern part of Suşehri Town, Turkey. Nat. Hazards 92, 133-154.
Dou, J., Yunus, A.P., Bui, D.T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.W., Han, Z., Pham, B.T., 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17, 641-658.
Falaschi, F., Giacomelli, F., Federici, P.R., Puccinelli, A., D’Amato Avanzi, G., Pochini, A., Ribolini, A., 2009. Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy. Nat. Hazards 50, 551-569.
Galeandro, A., Doglioni, A., Simeone, V., Šimůnek, J., 2014. Analysis of infiltration processes into fractured and swelling soils as triggering factors of landslides. Environ. Earth Sci. 71, 2911-2923.
Gómez, H., Kavzoglu, T., 2005. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. J. Eng. Geol. 78, 11-27.
Grozavu, A., Mărgărint, M.C., Patriche, C.V., 2012. Landslide susceptibility assessment in the brăieşti-sineşti sector of iaşi cuesta. Carpathian J. Earth Environ. Sci. 5(2), 61-70.
Hagan, T.M., Demuth, B.H., Beale, H.M., De Jesús, O., 2014. Neural network design, 2nd (ed). Electrical Engineering Series.
Hashemi Tabatabaei, S., 1998. Landslide hazard zonation in southwest of Ardabil Province in Iran. Ministry of Roads and Urban Development, Tehran, Iran (in Persian).
Hemmati, R., Dolatimehr, A., Nasirifar, A., Shahbazi, M., Hezhabrpour, Gh., Aghaei, Kh., 2007. Ardabil Province climate. Applied Meteorology Research Center of Ardabil, Islamic Respublication of Iran Meteorological Organization, Ministry of Roads and Urban Development, Iran (in Persian).
Hong, H.Y., Liu, J.Z., Zhu, A.X., 2019. Landslide susceptibility evaluating using artificial intelligence method in the Youfang district (China). Environ. Earth Sci. 78(15),1-20.
Huang, F.M., Cao, Z.S., Guo, J.F., Jiang, S.H., Li, S., Guo, Z.Z., 2020. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena 191, 104580.
Jianqiang, Z., Yonggang, G., Yong, L., Qiang, Z., Yuhong, J., Huayong, C., Xiaoqing, C., 2022. Zonation-based landslide hazard assessment using artificial neural networks in the China-Pakistan Economic Corridor. Front. Earth Sci. 10(927102), 1-15.
John, R.D., Anne-Gaelle, A., James, D.S., Lavs, B., 2006. Validation of a region-wide model of landslide susceptibility in the Manawatu-Wanganui region of New Zealand. Geomorphology 1-4, 70-79.
Khosravi, M., Jamali, A.A., 2019. forecasting the trend of landslide changes in the northern region of quchan with regard to the factors affecting landslide using neural network, cellular automata-markov, and regression logistics. J. Geol. and Environ. Hazards 7(3), 1-17 (in Persian).
Lee, S., 2007. Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf. Process. Landf. 32, 2133-2148.
Lee, S., Min, K., 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 40 (9): 1095-1113.
Lee, S., Pradhan, B., 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4, 33-41.
Li, B., Wang, N., Chen, J., 2021. GIS-based landslide susceptibility mapping using information, frequency ratio, and artificial neural network methods in Qinghai Province, northwestern China. Adv. Civ. Eng. Article ID 4758062: 1-14.
Ling, S., Zhao, S., Huang, J., Zhang, X., 2022. Landslide susceptibility assessment using statistical and machine learning techniques: a case study in the upper reaches of the Minjiang River, southwestern China. Front. Earth Sci. 10, 986172.
Liu, Y.L., 2010. Application of logistic regression and artificial neural networks in spatial assessment of landslide hazards. Hydrogeol. Engin. Geol. 37(5), 92-96.
Mathew, J., Jha, V.K., Rawat, G.S., 2009. Landslide susceptibility zonation mapping and its validation in part of garhwal lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6, 17-26.
Meinhardt, M., Fink, M., Tünschel, H., 2015. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology 234, 80-97.
Menard, S., 2002. Applied logistic regression analysis, 2nd (ed.). Sage University Paper Series on Quantitative Applications in Social Sciences, vol. 106, Thousand Oaks, California, USA.
Meten, M., Bhandary, N.P., Yatabe, R., 2015. GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in Central Ethiopia. J. Mt. Sci. 12(6), 1355-1372.
Nhu, V.H., Shirzadi, A., Shahabi, H., Singh, S.K., Al-Ansari, N., Clague, J.J., Jaafari, A., Chen, W.S., Miraki, J., Dou, C., Luu, K,. Górski, B., Thai Pham, H., Nguyen, D., Ahmad, B.B., 2020. Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. Int. J. Environ. Res. Public Health 17(8), 1-30.
Nikandish, N., Mir Sanei, R., 1996. Introduction to Ardabile Province landslides. Iran Ministry of Jihad-e- Agriculture, Tehran, Iran (in Persian).
Norusis, M.J., 2006. SPSS 15.0 guide to data analysis. Pearson Education (US) Publisher, USA.
Pham, B.T., Bui, D.T., Prakash, I., 2017. Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study. Geotech. Geol. Eng. 35(6), 2597-2611.
Polykretis, C., Ferentinou, M., Chalkias, C., 2015. A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bull. Eng. Geol. Environ. 74, 27-45.
Pourghasemi, H.R., Rahmati, O., 2018. Prediction of the landslide susceptibility: which algorithm, which precision? Catena 162, 177-192.
Rai, D.K., Xiong, D., Zhao, W., Zhao, D., Zhang, B., Mani Dahal, N., Wu, Y., Aslam Baig, M., 2022. An ınvestigation of landslide susceptibility using logistic regression and statistical ındex methods in Dailekh District, Nepal. Chinese Geographical Science 32, 834-851.
Rana, H., Babu, G.L.S., 2022. Regional back analysis of landslide events using TRIGRS model and rainfall threshold: an approach to estimate landslide hazard for Kodagu, India. Bull. Eng. Geol. Environ. 81(4), 160.
Regmi, A.D., Devkota, K.C., Yoshida, K., Pradhan, B., Pourghasemi, H.R., Kumamoto, T., Akgun, A., 2014. Application of frequency ratio, statistical index, and weights-ofevidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 7(2), 725-742.
Saha, S., Arabameri, A, Saha, A., Blaschke, T., Ngo, P.T.T., Nhu, V.H., Band, S.S., 2021. Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on crossvalidation method. Sci. Total Environ. 764, 142928.
Saro, L., Seong, J., Woo, O., Young, K., Moung-Jin, L., 2016. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: a casestudy of Inje, Korea. Open Geosci. 8, 117-132.
Sdao, F., Lioi, D.S., Pascale, S., Caniani, D., Mancini, I.M., 2013. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera. Nat. Hazards Earth Syst. Sci. 13, 395-407.
Sepah Vand, A.R., Moradi, H.R., Abdolmaleki, P., 2017. Landslide hazard mapping using the artificial neural network a part of Haraz Watershed. Watershed Manag. Res. (Pajouhesh and Sazandegi) 29(4)-113, 9-19 (in Persian).
Shirani, K., Arabameri, A.R., 2015. Landslide hazard zonation using logistic regression method, case study: Dez-e-Oulia Basin. J. Water Soil Sci. 19 (72), 321-335 (in Persian).
Shirani, K., Heydari, F., Arabameri, A., 2017. Comparison of artificial neural network and multivariate regression methods in landslide hazard zonation, case study: Vanak Basin, Isfahan Province. J. Watershed Engin. Manage. 9(4), 45-464 (in Persian).
Shirani, K., Naderi Samani, R., 2022. Determination of effective factors and assessment of landslide susceptibility using random forest and artificial neural network in Doab Samsami region, Chaharmahal va Bakhtiari Province. Watershed Manage. Res. J. 35(1), 40-60 (in Persian).
Su, C., Wang, L., Wang, X., Huang, Z., Zhang, X., 2015. Mapping of rainfallinduced landslide susceptibility in Wencheng, China, using support vector machine. Nat. Hazards 76, 1759-1779.
Talaei, R., 2018. A combined model for landslide susceptibility, hazard and risk assessment. AUT J. Civil Engin. 2(1), 11-28.
Talaei, R., Ghayoumian, J., Shariat Jafari, M., Aliakbarzadeh, E., 2004. Study on effective factor causing landslide in southwest of Khalkhal region. Agriculture Research and Education Organization, Ministry of Jahad-e-Agriculture, Tehran, Iran (in Persian).
Tanyu, B.F., Abbaspour, A., Alimohammadlou, Y., Tecuci, G., 2021. Landslide susceptibility analyses using Random Forest, C4.5, and C5.0 with balanced and unbalanced datasets. Catena 203, 105355.
Thiery, Y., Maquaire, O., Fressard, M., 2014. Application of expert rules in indirect approaches for landslide susceptibility assessment. Landslides 11, 411-424.
Tian, Y.Y., Xu, C., Chen, J., Zhou, Q., Shen, L.L., 2017. Geometrical characteristics of earthquake-induced landslides and correlations with control factors: a case study of the 2013 Minxian, Gansu, China, Mw 5.9 event. Landslides 14, 1915-1927.
Türköz, M., Tosun, H., 2011. A GIS model for preliminary hazard assessment of swelling clays, a case study in Harran Plain (SE Turkey). Environ. Earth Sci. 63(6), 1343-1353.
Uromeihy, A., Mahdavifar, M.R., 2000. Landslide hazard zonation of the Khorshrostam area, Iran. Bull. Eng. Geol. Environ. 58, 207-213.
Wahono, B.F.D., 2010. Applications of statistical and heuristical methods for landslide susceptibility assessments: a case study in Wadas Lintang sub district, Wonosobo Regency, Central Java Province, Inonesia. MSc Thesis, Gadjah Mada University, International Institute for Geo-Information and Earth Observation.
Wang, L.J., Guo, M., Sawada, K., Lin, J., Zhang, J., 2016. A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci. J. 20, 117-136.
Xie, P., Wen, H., Ma, C., Baise, L.G., Zhang, J., 2018. Application and comparison of logistic regression model and neural network model in earthquake-induced landslides susceptibility mapping at mountainous region, China. Geomatics Nat. Hazards Risk 9(1), 501-523.
Xu, C., Xu, X., Dai, F., Wu, Z., He, H., Shi, F., Wu, X., Xu, S., 2013. Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Nat. Hazards 68, 883-900.
Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engin. Geol. 79(3-4), 251-261.
Yilmaz, I., 2009. A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull. Eng. Geol. Environ. 68, 297-306.
Zhang, Y.S., Dong, S.W., Hou, C.T., Guo, C.B., Yao, X., Li, B., Du, J.J., Zhang, J.G., 2013. Geohazards induced by the Lushan Ms7.0 earthquake in Sichuan Province, Southwest China: typical examples, types and distributional characteristics. Acta Geol. Sin. 87(3), 646-657.
Zhang, J., van Westen, C.J., Tanyas, H., Mavrouli, O., Ge, Y., Bajrachary, S., Gurunget, D.R., Dhital, M.R., Khanal, N.R., 2019a. How size and trigger matter: analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the koshi river basin, central himalaya. Nat. Hazards Earth Syst. Sci. 19(8), 1789-1805.
Zhang, T., Han, L., Zhang, H., Zhao, Y., Li, X., Zhao, L., 2019b. GIS based landslide susceptibility mapping using hybrid integration approaches of fractal dimension with index of entropy and support vector machine. J. Mt. Sci. 16, 1275-1288.
Zhang, T., Li, Y., Wang, T., Wang, H., Chen, T., Sun, Z., Luo, D., Li, C., Han, L., 2022. Evaluation of different machine learning models and novel deep learning‑based algorithm for landslide susceptibility mapping. Geosci. Lett. 9(26) 1-16.