Ahmadi Baseri, N., Shirvani, A., Nazemosadat, M.J., 2014. The application of ANN for downscaling GCMs outputs for prediction of precipitation in across Southern Iran. J. Soil Water Conserv. 28(5), 1037-1047 (in Persian).
Alberg, D., Last, M., Kindle, A., 2012. Knowledge discovery in data streams with regression tree methods. WIREs Data Mining Knowl. Discov. (2), 69-78.
Alizadeh, M., Gorbani, M., Darbandi, S., 2020. The effect of climate change on the severity and duration of meteorological drought under the LARS-WG model, case study: Ardabil Synoptic Station. Proceedings of 9th National Conference on Rainwater Catchment Systems, University of Tabriz, Tabriz, Iran.
Almazroui, M., Saeed, F., Saeed, S., Islam, M.N., Ismail, M., Klutse, N.A.B., Siddiqui, M.H., 2020. Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst. Environ. 4(3), 455-475.
Alvisi, S., Mascellani, G., Franchini, M., Bardossy, A., 2006. Water level forecasting through fuzzy logic and artificial neural network approaches. Hydrol. Earth Syst. Sci. 10, 1-17.
Amirabadizadeh, M., Nazeri Tahroudi, M., Zeynali, M.J., 2018. Evaluation of the accuracy of artificial intelligence and regression models for the simulation of daily temperature. J. Meteoro. Atmos. Sci. 1(1), 65-76 (in Persian).
Asakereh, H., Hesami, N., 2019. Assessing the application of artificial neural networks and SDSM models to simulate the minimum and maximum temperatures at Isfahan station. J. Geophys. Res. Desert Areas 7(2), 133-158 (in Persian).
Dehghani, R., Younesi, H., Torabi Podeh, H., 2017. Comparing the performance of support vector machine, gene expression programming and Bayesian networks in predicting river flow, case study: Kashkan River. Water Soil Conserv. 24(4), 161-177 (in Persian).
ESGF, 2020. Earth system grid federation. https://esgf-node.llnl.gov/search/cmip5/ (accessed 25 April 2020).
Feizi, A., Aghajani Jomayran, R., 2021. Allocation and management of water resources in the Yamchi Dam Basin with scenario analysis approach using WEAP model. J. Environ. Sci. Technol. 23(9), 89-107 (in Persian).
Goodarzi, M., Choobeh, S., 2019. Assessment of downscaling methods in predicting climatic parameters under climate change status: a case study in Ardabil Synoptic Station. Iran-Watershed Manag. Sci. Engin. 13(45), 63-69 (in Persian).
Gudmundsson, L., Boulange, J.DO.X., Gosling, S.N., Grillakis, M.G., Koutroulis, A.G., Zhao, F., 2021. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371(6534), 1159-1162.
Hamidi, O., Poorolajal, J., Sadeghifar, M., Abbasi, H., Maryanaji, Z., Faridi, H., Tapak, L., 2015. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran. Theor. Appl. Climatol. 119(3), 723–731.
IPCC, 2014. Summary for policymakers, In: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects. Cambridge University Press, Cambridge, United Kingdom and New York.
Javaherian, M., Ebrahimi, H., Aminnejad, B., 2021. Prediction of changes in climatic parameters using CanESM2 model based on RCP scenarios, case study: Lar Dam Basin. Ain Shams Eng. J. 12(1), 445-454.
Khezri, F., Irandoust, M., Jalalkamali, N., Yazdanpanah, N., 2022. Modeling and bivariate analysis of meteorological drought using data generation with climate change approach, case study: Lake Urmia. J. Soil Water Conserv. 11(2), 49-68 (in Persian).
Kia, E., Karimi, V., 2021. Investigation of temperature and rainfall parameters of Haraz River Basin affected by climate change. J. Nat. Enviro. Hazards 26(9), 145-160 (in Persian).
Miao, C.Y., Duan, Q.Y., Sun Q.H., Li, G.D., 2013. Evaluation and application of Bayesian multi-model estimation in temperature simulations. Prog. Phys. Geogr. 37(6), 727-744.
Mora, D.E., Campozano, L., Cisneros, F., Wyseure, G., Willems, P., 2014. Climate changes of hydrometeorological and hydrological extremes in the Paute Basin, Ecuadorean Andes. Hydrol. Earth Syst. Sci. (18), 631–648.
Nourani, V., Komasi, M., Mano, A., 2009. A multivariate ANN wavelet approach for rainfall–runoff modeling. Water Resour. Manag. 23(14), 2877-2894.
Nourani, V., Razzaghzadeh, Z., Baghanam, A.H., Molajou, A., 2019. ANN-based statistical downscaling of climatic parameters using decision tree predictor screening method. Theor. Appl. Climatol. 137(3), 1729-1746.
Omidvar, E., Rezaei, M., Pirnia, A., 2018. Performance evaluation of artificial neural network models for downscaling and predicting of climate variables. J. Watershed Manag. Res. 9(18), 80-90 (in Persian).
Pattnayak, K.C., Kar, S.C., Dalal, M., Pattnayak, R.K., 2017. Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries. Glob. Planet. Change 152, 152-166.
Rajaee, T., Nourani, V., Zounemat-Kermani, M., Kisi, O., 2011. River suspended sediment load prediction: application of ANN and wavelet conjunction model. J. Hydrol. Eng. 16(8), 613-627.
Razzaghzadeh, Z., Nourani, V., Hosseini baghanam, A., 2020. Application of mutual information feature extraction methods in statistical downscaling for investigation of climate change effects on Tabriz precipitation. J. Environ. Sci. Technol, in Press (in Persian).
Rezaee, M., Nahtaj, M., Moghadamniya, A., Abkar, A., Rezaee, M., 2015. Comparison of artificial neural network and SDSM methods in the downscaling of annual rainfall in the HadCM3 modelling, case study: Kerman, Ravar and Rabor. Water Resour. Engin. J. 8(24), 25-40 (in Persian).
Sabziparvar, A., F. Khoshhal Jahromi. 2018. Comparison of multi-layer perceptron artificial neural network and Linacre regression model performance for predicting daily minimum temperature (case study: Kerman, Shiraz, Rasht and Hamedan). Iranian Journal of Geophysics, 12(3):121-107, (in Persian)
Yang, H. H., S.V. Vuuren, S. Sharma and H. Hermansky. 2000. Relevance of time-frequency features for phonetic and speaker-channel classification. Speech Communication, 31(1): 35-50.