- Dodd GT, Luckman SM. Physiological Roles of GPR10 and PrRP Signaling. Front Endocrinol (Lausanne). 2013;4:20.
- Lin SH. Prolactin-releasing peptide. Results Probl Cell Differ. 2008;46:57-88.
- Prazienkova V, Popelova A, Kunes J, Maletinska L. Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int J Mol Sci. 2019;20(21).
- Tachibana T, Sakamoto T. Functions of two distinct "prolactin-releasing peptides" evolved from a common ancestral gene. Front Endocrinol (Lausanne). 2014;5:170.
- Davenport AP. Peptide and trace amine orphan receptors: prospects for new therapeutic targets. Curr Opin Pharmacol. 2003;3(2):127-34.
- Buffel I, Meurs A, Portelli J, Raedt R, De Herdt V, Sioncke L, et al. Neuropeptide FF and prolactin-releasing peptide decrease cortical excitability through activation of NPFF receptors. Epilepsia. 2015;56(3):489-98.
- Pirnik Z, Korinkova L, Osacka J, Zelezna B, Kunes J, Maletinska L. Cholecystokinin system is involved in the anorexigenic effect of peripherally applied palmitoylated prolactin-releasing peptide in fasted mice. Physiol Res. 2021;70(4):579-90.
- Rettori V, Milenkovic L, Riedel M, McCann SM. The role of neuropeptide Y (NPY) in control of gonadotropin and prolactin release in the rat. Gynecol Endocrinol. 1990;4(3):169-79.
- Wang G, Tachibana T, Gilbert ER, Cline MA. Exogenous prolactin-releasing peptide's orexigenic effect is associated with hypothalamic neuropeptide Y in chicks. Neuropeptides. 2015;54:79-83.
- Karnosova A, Strnadova V, Hola L, Zelezna B, Kunes J, Maletinska L. Palmitoylation of Prolactin-Releasing Peptide Increased Affinity for and Activation of the GPR10, NPFF-R2 and NPFF-R1 Receptors: In Vitro Study. Int J Mol Sci. 2021;22(16).
- Penninx BWJH, Pine DS, Holmes EA, Reif A. Anxiety disorders. Lancet. 2021;397(10277):914-27.
- Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211-59.
- Robinson GE, Fernald RD, Clayton DF. Genes and social behavior. Science. 2008;322(5903):896-900.
- Tan T, Wang W, Williams J, Ma K, Cao Q, Yan Z. Stress Exposure in Dopamine D4 Receptor Knockout Mice Induces Schizophrenia-Like Behaviors via Disruption of GABAergic Transmission. Schizophr Bull. 2019;45(5):1012-23.
- Takano Y, Ukezono M. An experimental task to examine the mirror system in rats. Sci Rep. 2014;4:6652.
- Turner KM, Peak J, Burne TH. Measuring Attention in Rodents: Comparison of a Modified Signal Detection Task and the 5-Choice Serial Reaction Time Task. Front Behav Neurosci. 2015;9:370.
- Ben-Ami Bartal I, Rodgers DA, Bernardez Sarria MS, Decety J, Mason P. Pro-social behavior in rats is modulated by social experience. eLife. 2014;3:01385.
- Davis XS, Grill HJ. The hindbrain is a site of energy balance action for prolactin-releasing peptide: feeding and thermic effects from GPR10 stimulation of the nucleus tractus solitarius/area postrema. Psychopharmacology (Berl). 2018;235(8):2287-301.
- Morales T, Sawchenko PE. Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation. Neuroscience. 2003;121(3):771-8.
- Mochiduki A, Takeda T, Kaga S, Inoue K. Stress response of prolactin-releasing peptide knockout mice as to glucocorticoid secretion. J Neuroendocrinol. 2010;22(6):576-84.
- Card JP, Johnson AL, Llewellyn-Smith IJ, Zheng H, Anand R, Brierley DI, et al. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. J Comp Neurol. 2018;526(14):2149-64.
- McConn BR, Tachibana T, Gilbert ER, Cline MA. Prolactin-releasing peptide increases food intake and affects hypothalamic physiology in Japanese quail (Coturnix japonica). Domest Anim Endocrinol. 2020;72:106464.
|