- Abdallah, M. A. 1991. Pyoverdins and pseudobactins, In Winkelmann (ed.) Handbook of Microbial Iron Chelates. CRC. Press, Inc., Boca Rato, Fla.
- Abeles, F.B., D.W. Morgan and M. E. Saltveit Jr. 1992. Ethylene in Plant Biology. 2nd (ed). Academic Press, New York.
- Adolphe, D. 1980. Canola rapeseed corn. Agriculture Canada CPS Food, Ltd. University of Saskatchewan.
- Atlas, R. M.1993. Handbook of microbiological media. L. C. Parks. (ed) CRC Press Inc.
- Belimov, A. A., V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, V. E. Tsyganov, A. Y. Borisov, I. A. Tikhonovich, C. Kluge, A. Preisfeld, K. J. Dietz, and V.V. Stepanok. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soil and containing 1-aminocyclopropane-1-carboxylate deaminase. Can . J . Microbiol. 47: 642-652.
- Belimov, A. A., N. Hotzeas, V. I. Safronova, S.V. Demchinskaya, G. Piluzza, S. Bullitta, and B . R. Glick. 2005. Cadmium-tolerant plant growth- promoting bacteria associated with the roots of Indian mustard (Brassica juncea Czern.). Soil Biol . Biochem. 37: 241-250.
- Benizri, E., A. Courtade, C. Picard, and A. Guchert. 1998. Role of maize root exudates in the production of auxins by Pseudomonas fluorescens. Soil Biol. Biochem. 30: 1481-1484.
- Bossis, E., P. Lemenceau, X. Latour, and L. Gardan, 2000. The taxonomy of pseudomonas fluorescens and pseudomonas putida: current status and need for revision. Agron. 20: 51-63.
- Boven, G. D., and A. D. Rovira. 1999. The rhizosphere and its management to improve plant growth. Advances in Agronomy 66: 1-102.
- Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-258.
- Brimecombe, M. J., F. A. De Leij, and J. M. Lynch. 2001. The effect of root exudates on rhizosphere microbial populations. In Pinton, Z. Varanini, P. Nannipieri, (eds.) The Rhizosphere. Marcel Dekker, New York, pp: 95-140.
- Burd, G. I., D. G. Dixon, and B. R. Glick. 1998. A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl . Environ. Microbiol. 64: 3663-3668.
- Burd, G. I ., D. G. Dixon, and B. R. Glick. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can . J . Microbiol. 46: 245-247.
- Burdman, S., E. Jurkevitch, and Y. Okon. 2000. Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In S. Subba Rao and Y. R. Domergues (eds.) Microbial Interactions in Agriculture and Forestry. Science Publisher. Inc. pp: 229-242.
- Davison, J . 1988. Plant beneficial bacteria. Biotech. 6: 282-286.
- Dworkin, M. and J. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen J. Bacteriol. 75:592-601.
- Glick, B . R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117.
- Glick, B. R., D. M. Penrose, and J. Li. 1997a. A model for the lowering of plant ethylene concentration by plant growth- promoting bacteria. J. Theor. Biol. 190: 63-68.
- Glick, B . R., C. Liu, S. Ghosh, and E . B. Dumbroff. 1997b. Early development of canola seedlings in the presence of the root elongation. Soil Biol. 29: 1233-1239 .
- Glick, B . R. 2005. Modulation of plant ethylene levels by the bacteria enzyme ACC deaminase. FEMS Microbiol. Let. 251: 1-7
- Glick, B . R., D. M. Karaturovic, and P.C. Newell. 1995. A novel for rapid isolation of plant growth-promoting pseudomonads. Can . J . Microbiol. 41: 533-536
- Grichko, V. P., and B .R. Glick. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39: 11-17 .
- Hall, J . A., D. Peirson, S. Ghosh, and B . R. Glick. 1996. Root elongation in various agronomic crops by the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 . Israel Plant Sci. 44: 37-42 .
- Hyodo, H. 1991. Stress/wound ethylene. In K. Matoo and J. C. Suttle (eds.) The Plant Hormone Ethylene. CRC Press . Boca Raton, FL . pp: 65-80 .
- Jacobson, C. B., J. J. Pasternak, and B. R. Glick. 1994. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 40: 1019-1025.
- Jia, Y.J., H. Ito, and M. Honma, 2000. 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci. Biotechnol. Biochem. 64: 299-305.
- Klee, H . J., M . B. Hayford, K . A. Kretzmer, G . F. Barry, and G . M. Kishore. 1991. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell. 3: 1187-1193.
- Kloepper, J . W., R. Lifshittz, and R . M. Zablotowicz. 1989. Free-living bacterial inocula for enchancing crop productivity. Trends Biotechnol. 7: 39-43.
- Krieg, N. R. 1984. Bergey,s Manual of Systematic Bacteriology. Vol(1). Williams & Wilkins Press.
- Ma, W., S. B. Sebestianova, J. Sebestian, G. I. Burd, F. C. Guinel, and B . R. Glick. 2003a. Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium Antonie Van Leeuwenhoek. 83: 285-291
- Ma, W., F. C. Guinel, and B . R. Glick. 2003b. Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl . Environ. Microbiol. 69: 4396-4402
- Mac Faddin, J. F. 1980. Biochemical tests for identification of medical bacteria. 2nd (ed) Waverly Press, Inc.
- Mass, E .V., and G. J. Hoffman. 1977. Crop salt tolerance: Current assessment. J. Irrigation Drain. 103: 115- 134.
- Mayak, S., T. Tirosh, and B. R. Glick. 2004a. Plant growth-promoting bacteria that confer ressistance to water stress in tomatoes and pepers. Plant Science. 66: 525-530.
- Mayak, S., T. Tirosh, and B .R. Glick. 2004b. Plant growth-promoting bacteria that confer ressistance in tomato plant to salt stress. Plant Physiol. Biochem. 42: 565-572.
- Minami, R., K. Uchiyama, T. Murakami, J. Kawai, K. Mikami, and T. Yamada. 1998. Properties, sequence and synthesis in coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J. Biochem. 123: 1112-1118.
- Penrose, D. M., and B. R. Glick, 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant 118: 10-15.
- Rennie, R. J. 1980. A single medium for the isolation of acetylene-reducing (dinitrogen - fixing ) bacteria from soils. Can. J. Microbiol. 27: 8-14.
- Schaad, N. W. 2001. Laboratory guide for identification of plant phathogenic bacteria. 3nd (ed). APS Press
- Shah, S., J. Li, B. A. Moffatt, and B. R. Glick. 1998. Isolation and characterization of ACC deaminase genes from two different plant growth promoting rhizobacteria. Can. J. Microbiol. 44: 833-843.
- Suslow, T. V., and M. N. Schroth. 1982. Rhizobacteria of sugerbeens: effects of seed application and root colonization on yield. Phytopathol. 72: 199-206.
- Thornley, M. J. 1960. The identification of Pseudomonads from other gram- negative bacteria on the basis of arginine metabolism. Appl. 13: 37-52.
- Vlassak, K., L. V. Holm, L. Duchateau, J. Vanderleyden, and R. D. Mot. 1992. Isolation and characterization of fluorescent pseudomonas associated with the roots of rice and banana growth in Srilanka. Plant 145: 51-63.
- Wang, C., D. Wang, and Q. Zhou. 2004. Colonization and persistence of a plant growth promoting bacterium pseudomonas fluorescens strain CS85, on roots of cotton seedlings. Can . J. Microbiol. 50: 475-481
- Whipps, J. M. 1990. Carbon economy. In M. Lynch (ed.) The Rhizosphere. Jonh Wiley & Sons, New York. pp: 59-97.
|