1استادیار، گروه خاکشناسی دانشکده کشاورزی دانشگاه زنجان
2دانشیار، گروه خاکشناسی دانشکده کشاورزی دانشگاه تربیت مدرس
3دانشیار، گروه آبخیزداری دانشکده منابع طبیعی دانشگاه تربیت مدرس
4استادیار پژوهش، سازمان تحقیقات، آموزش و ترویج کشاورزی
چکیده
فرسایشپذیری خاک بیانگر سهولت جداشدن ذرات خاک و انتقال آنهاست. این عامل ممکن است تحت تأثیر ویژگیهای مختلف فیزیکی و شیمیایی خاک قرار گیرد. به منظور بررسی تأثیر ویژگیهای فیزیکوشیمیایی بر فرسایشپذیری در خاکهای آهکی، این پژوهش در شهرستان هشترود واقع در جنوب استان آذربایجانشرقی طی سال 1384 انجام گرفت. خاک منطقه عمدتاً با بافت لومی رسی و دارای حدود 13 درصد آهک است. برای انجام پژوهش محدودهای از زمینهای کشاورزی دیم به مساحت 900 کیلومتر مربع انتخاب و به 36 شبکه منظم مربعی شکل جدا گردید. در هر شبکه 3 تکرار کرت واحد با فاصله 2/1 متر ایجاد شد. ویژگیهای فیزیکوشیمیایی شامل شن، سیلت، رس، سنگریزه، ماده آلی، آهک، پتاسیم، پایداری خاکدانه و نفوذپذیری در خاک کرتها اندازهگیری شد. مقدار فرسایشپذیری از نسبت مقدار فرسایش بر مقدار عامل فرسایندگی باران به دست آمد. بر اساس نتایج، میانگین مقدار فرسایش و فرسایشپذیری خاک به ترتیب 868932/1 تن در هکتار در سال و 004258/0 تن ساعت در مگاژول میلیمتر بود. بین فرسایشپذیری خاک با شن، شن درشت، سیلت، ماده آلی، آهک، پایداری خاکدانه و نفوذپذیری خاک همبستگی معنیدار وجود داشت. سیلت برخلاف سایر ویژگیها اثری مثبت بر فرسایشپذیری گذاشت. همبستگی بین فرسایشپذیری خاک با رس، سنگریزه و پتاسیم معنیدار نبود. نتایج اثر ویژگیهای فیزیکوشیمیایی بر فرسایشپذیری با روش تجزیه مولفههای اصلی نشان داد که در خاکهای آهکی مورد بررسی، فرسایشپذیری خاک عمدتاً تحت تأثیر نفوذپذیری، رس و آهک قرار میگیرد. این ویژگیها اثر کاهشی معنیدار (001/0 P<و 84/0=R2) بر فرسایشپذیری خاک داشتند.
Effect of Physicochemical Properties on Erodibility in Calcareous Soils
نویسندگان [English]
Ali Reza Vaezi1؛ H. A. Bahrami2؛ S. H. R. Sadeghi3؛ M. H. Mahdian4
1Assisstance Professor, Soil Science in Agriculture Faculty of Zanjan University
2Associate Professor, Soil Science in Agriculture Faculty of Tarbiat Modares University
3Associate Professor, Soil and Water Conservation Engineering in Natural Resources Faculty of Tarbiat Modares University
4Assisstance Professor of Research, Ejucation and Extension Organization of Agriculture Ministry
چکیده [English]
Soil erodibility defines the resistance of the soil to both detachment and transport. This factor may be affected by some soil physicochemical properties. This study was conducted to determine physicochemical properties affecting the erodibility (K factor) in calcareous soils. The study was conducted in the Hashtrood, located in northwestern Iran, from March 2005 to March 2006. The study soils had almost 13% limeand 1% organic matter. In order to investigate, the square network of agricultural soils with 900 km2 in area was selected and divided into 36 regular grids. In each grid, the erosion plots designed agreement to unit plot at 3 replicates with 1.2 m spacing. The physicochemical soil properties consited of sand, coarse sand, very fine sand, silt, clay, gravel, organic matter, lime (TNV), potassium, aggregate stability and permeability were measured in the study soils. The soil erodibility was measured based on annual soil loss amount per unit rainfall erosivity factor. The soil loss at the unit plots was affected by 23 natural rainfall events during the study period. Avereage soil loss and soil erodibility in the study area were 1.868932 t/ha.year and 0.004258 t.h/MJ.mm respectively. The soil erodibility significantly was affected by sand, silt, organic matter, lime, aggregate stability and permeability. Silt contrary to sand, organic matter, lime aggregate stability and permeability increased the soil erodibility. Correlation between the soil erodibility and clay, gravel and potassium was not significant. Study of effect of the physicochemical properties on the erodibility with principal component analysis method revealed that the soil erodibility mainly is affected by permeability, clay and lime. These soil properties significantly (R2=0.84, p<0.001) decresed the soil erodibility.
رفاهی، ح. ق. 1375. فرسایش آبی و کنترل آن. چاپ اول، انتشارات دانشگاه تهران، ایران، صفحه 140 تا 147.
رضوی پاریزی، س. ا. 1382. مقدمهای بر تحلیل رگرسیون خطی، چاپ اول، انتشارات دانشگاه شهید باهنر کرمان، صفحه 475 تا 476.
علیاحیائی، م. 1375. روشهای تجزیه خاک، نشریه فنی شماره 893، موسسه تحقیقات خاک و آب، تهران، ایران، صفحه 6 تا 128.
قادری، ن و ج. قدوسی. 1384. بررسی فرسایش پذیری خاک در واحدهای اراضی حوزه تلوار چای. مجموعه مقالات سومین همایش ملی فرسایش و رسوب، مرکز تحقیقات حفاظت خاک و آبخیزداری، صفحه 367 تا 372.
حکیمی. 1365. مطالعات خاکشناسی اجمالی منطقه هشترود، نشریه شماره 767، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، وزارت کشاورزی، تهران، ایران، صفحه 2 تا 15.
قربانی واقعی، ح. و بهرامی، ح. ع. 1384. ارزیابی تغییرات عامل فرسایشپذیری خاک به روش وزنی در دو مدل USLE و RUSLE به کمک GIS در خاکهای شمال شرق استان لرستان. مجموعه مقالات سومین همایش ملی فرسایش و رسوب، مرکز تحقیقات حفاظت خاک و آبخیزداری، صفحه 658 تا660.
Barthe`s, B. and Roose, E. 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47(2):133– 149.
Castrignanoo, A., Giugliarini, L., Risaliti, R and Martinelli, N. 2000. Study of spatial relationships among some soil Physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma 97: 39-60.
Castro, C. and Logan T.J. 1991. Limming effects on the stability and erodibility of som Brazilian oxisols. Soil Sci. Soc. Am. J. 55: 1407-1413.
Dong-Sheng, Y., Xue-Zheng, S. and Weindorf, D. C. 2006. Relationships Between Permeability and Erodibility of Cultivated Acrisols and Cambisols in Subtropical China. Pedosphere 16(3): 304-311.
Charman, E. V. and Murphy, B. W. 2000. Soils (their properties and management). Second edition, Land and Water Conservation, New South Wales, Oxford, pp. 206-212.
Duiker, S. W., Flanagan, D. C. and Lal, R. 2001. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena 45: 103-121.
Jollife, 1986. Principal Component Analysis. Springer-Verlag, New York, pp. 186-189.
McIntosh, P. and Lafflan, M. 2005. Soil erodibility and erosion hazard: Extending these cornerstone soil conservation concepts to headwater streams in the forestry estate in Tasmania. Forest Ecology and Management 220:128-139.
Miller, R. W. and Gardiner, T. 1998. Soils in our environment. Eighth edition, Prentice-Hall Inc.، United State of America pp. 75-81.
Rodríguez, R. R., Arbelo, C. D., Guerra, J. A., Natario, M. J. S. and Armas, C. M. 2006. Organic carbon stocks and soil erodibility in Canary Islands Andosols. Catena 66:228-235.
Santos, F. L., Reis, J. L., Martins, O. C., Castanheria, N. L., and Serralherio, R. P. Comparative assessment of infiltration, runoff and erosion of sprinkler irrigation soils. Biosystems Engineering, 86(3):355-364.
Schwab, G. O., Fanmeier,, D., Elliot, W. J. and Frevert, R. K. 1993. Soil and water conservation engineering. Fourth edition, John Wiley & Sons, Inc., New York. pp. 92-103.
Wischmeier, W. H. and Smith, D.D. 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook No. 537. US Department of Agriculture, Washington DC.
Zhang, K., Li, S., Peng, W. and Yu, B. 2004. Erodibility of agricultural soils and loess plateau of China. Soil & Tillage Research 76: 157-165.