| 
		
اعتمادیان، م.، ا. حسنی.، م. نورزاده حداد، و م. حنیفه ئی. 1396. ﮐﺎرﺑﺮد اﺳﯿﺪﻫﺎی آﻟﯽ و ﻣﻌﺪﻧﯽ ﺑﺮ آزادﺳﺎزی ﻋﻨﺎﺻﺮ ﻏﺬاﯾﯽ در ﺧﺎکﻫﺎی آﻫکی. نشریه پژوهشهای حفاظت آب و خاک، 24 (5): 91-73.رضاخانی، ل.، ب. متشرع زاده.، م. طهرانی.، ح. اعتصامی، و ح. میرسیدحسینی. 1398. اﺛﺮ ﺳﯿﻠﯿﺴﯿﻢ و ﺑﺎﮐﺘﺮیﻫﺎی ﺣﻞﮐﻨﻨﺪه ﻓﺴﻔﺎت ﺑﺮ اﻓﺰاﯾﺶ ﮐﺎراﯾﯽ ﻣﺼﺮف ﻓﺴﻔﺮ. شانزدهمین کنگره علوم خاک ایران، زنجان.رضاخانی، ل.، ب. متشرع زاده.، م. طهرانی.، ح. اعتصامی، و ح. میرسیدحسینی. 1400. بررسی دینامیک شکلهای شیمیایی سیلیسیم در خاک آهکی و اثر آن بر فراهمی فسفر. هفدهمین کنگره علوم خاک ایران و چهارمین همایش ملی مدیریت آب در مزرعه، کرج.صالح، ج.، ن. نجفی، و ش، اوستان. 1394. تأثیر مصرف سیلیسیم بر رشد، ترکیب شیمیایی و برخی ویژگیهای فیزیولوژیکی برنج (Oryza sativa) در شرایط شور. مجله علوم و فنون کشاورزی و منابع طبیعی،72: 240-229.کیانی، ز.، ا. عبدل زاده، و ح. ر، صادقی پور. 1393. تحریک رشد، افزایش آهن، پتاسیم و ترکیبات دیواره سلولی با کاربرد سیلیسیم در گیاه برنج تحت شرایط کمبود آهن. نشریه پژوهشهای زراعی ایران، 12(1): 72-65.مالمیر، ر.، ب. متشرعزاده، و ل. تبریزی. 1396. تأثیر کاربرد منابع مختلف سیلیسیم بر محتوای عناصرغذایی فسفر، پتاسیم و سیلیسیم گیاه استویا (Stevia rebaudiana Bertoni). پانزدهمین کنگره علوم خاک ایران. شهریور 1396. اصفهان. ایران.یوسفی، ر.، و م. اثنی عشری. 1396. ﺗﺄﺛﻴﺮ ﻣﻴﮑﺮﻭ ﻭ ﻧﺎﻧﻮﺫﺭﺍﺕ ﺳﻴﻠﻴﺴﻴﻢ ﺑﺮ ﻏﻈﺖ ﻋﻨﺎﺻﺮ ﭘﺮﻣﺼﺮﻑ، ﮐﻢﻣﺼﺮﻑ ﻭ ﻣﻴﺰﺍﻥ ﺳﻴﻠﻴﺴﻴﻢ ﮔﻴﺎﻩ ﺗﻮﺕﻓﺮﻧﮕﻲ ﺩﺭ ﺷﺮﺍﻳﻂ ﮐﺸﺖ ﺑﺪﻭﻥ ﺧﺎﮎ. نشریه علوم و فنون کشتهای گلخانهای، 8 (1): 70-57.Alzoubi, M. M., Gaibore, M. 2012. The effect of phosphate solubilizing bacteria and organic fertilization on availability of syrian rock phosphate and increase of triple superphosphate efficiency. World J. Agric. Sci, 8: 473–478, doi: 10.5829/idosi.wjas. 8.5.1668Baybordi, A. 2006. Zinc in soils and crop nutrition. Paivar press. Tabriz, Iran. 180 pp. (In Persian).Bityutskii, N., Pavlovic, J., Yakkonen, K., Maksimović, V., Nikolic, M. 2014. Contrasting effect of silicon on iron, zinc and manganese status and accumulation of meta mobilizing compounds in micronutrient-deficient cucumber. Plant Physiology and Biochemistry. 74: 205-211.Dutta, S. and Podile, A. R. 2010. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Critical Reviews in Microbiology. 36: 232-244.Elhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, Ch., Rchiad, Z., Zeroual, Y., Lyamlouli, K., and Bargaz, A. 2020. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Frontiers in plant science, doi: 10.3389/fpls.2020.00979El-Leboudi, S., El-Sebaay, A. S., Hassan Abd Elrahman, Sh., Wafaa, M., Saad, H. Y. 2019. Effect of silicon and phosphorus additions and their interactions on wheat plants grown on a clay soil. Asian Soil Research Journal, 2(1): 1-10.Elrahman, S.H.A., Mostafa, M.A.M., Taha, T.A., Elsharawy, M.A.O., and Eid, M.A. 2012. Effect of different amendments on soil chemical characteristics, grain yield and elemental content of wheat plants grown on salt-affected soil irrigated with low quality water. Annals of Agricultural Sciences. 57: 2. 175-182.Etesami, H. and Jeong, B. R. 2018. Silicon (Si) review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety. 147(Supplement C): 881-896.Farshidi, M., Abdolzadeh, A., Sadeghipour, H. R. 2012. Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus) plants. Acta Physiologiae Plantarum. 34: 1779-1788.Fecht-Christoffers, M.M., P. Maier, K. Iwasaki, H.P. Braun and W.J. Horst. 2007. The Role of the leaf apoplast in manganese toxicity and tolerance in cowpea (Vigna unguiculata Walp). PP. 307-321. In: Sattelmache, B. and W.J. Horst (Eds.), The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions, Springer, The Netherlands.Gonzalo, M. J., Lucena, J. J., Hernández-Apaolaza, L. 2013. Effect of silicon addition on soybean and cucumber plants grown under iron deficiency. Plant Physiology and Biochemistry. 70: 455-461.Gottardi, S., Iacuzzo, F., Tomasi, N., Cortella, G., Manzocco, L., Pinton, R., Romheld, V., Mimmoe, T., Scampicchio, M., Costa, L. D., Cesco, S. 2014. Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiology and Biochemistry. 56: 14-23.Greger, M., Landberg, T., Vaculík, M. 2018. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants, 7:41.Guntzer, F., Keller, C., Meunier, J. D. 2012. Benefits of plant silicon for crops: areview. Agron. Sustain. Dev. 32: 201-213.Hallmark, C. T., Wilding, L. P., Smeck, N. E. 1982. Silicon. In: Page, A. L., Miller, R. H., Keeney, D. R, editors. Methods of soil analysis. Part 2: Chemical and microbiological properties, Agronomy monograph no. 9. 2nd ed. Madison: The America Society of Agronomy and Soil Science. P. 263-73.Hoagland, D. R. and Arnon, D. I. 1950. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Station 347.Kostic, L., Nikolic, N., Bosnic, D., Samardzic, J., Nikolic, M. 2017. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil. 419: 447-455.Kowalska, J., Tyburski, J., Jakubowska, M., Krzymińska, J. 2021. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon, 13(1): 211–217. https:// doi.org/10.1007/s12633-020-00414-4Li, Y., Alva, A., Sumner, M. 1999. Response of cotton cultivars to aluminum in solutions with varying silicon concentrations. Journal of Plant Nutrition. 12(7): 881-892.Lux, A., Luxova, M., Abe, J., Tanimoto, E., Hattori, T., Inanaga, S. 2003. The dynamics of silicon deposition in the sorghum root endodermis. New Phytol. 158: 437-441.Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London.Miransari, M. 2013. Soil microbes and the availability of soil nutrients. Acta Physiol. Plant. 35: 3075-3084.Narayanaswamy, C. and Prakash, N. 2009. Calibration and categorization of plant available silicon in rice soils of south India. Journal of Plant Nutrition. 32(8): 1237-1254.Nascimento, C. W. A., Cunha, P. K. V., Silva, A. J. 2008. Silicon alleviates the toxicity of cadmium and zinc inmaize (Zea mays L.) grown on a contaminated soil. J. Plant Nutr. Soil Sci. 171: 849-853.Olanrewaju, O. S., Glick, B. R., Babalola, O. O. 2017. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33: 197.Pascual, M. B., Echevarria, V., Gonzalo, M. J., Hernández-Apaolaza, L. 2016. Silico addition to soybean (Glycine max L.) plants alleviate zinc deficiency. Plant Physiol. Biochem. 108: 132-138.Pavlovic, J., Samardzic, J., Maksimovic, V., Timotijevic, G., Stevic, N., Laursen, K. H., Hansen, T. H., Husted, S., Schjoerring, J. K. Liang, Y., Nikolic, M. 2013. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol. 198(4): 1096-1107.Ramos-Solano, B., García, J. A. L., Garcia-Villaraco, A., Algar, E., Garcia-Cristobal, J., Mañero, F. J. G. 2010. Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L. Plant Soil. 334: 189-197.Rayan, J., Estefan, G., Rashid, A. 2007. Soil and plant analysis laboratory manual. ICARDA.Rezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H., Mirseyed Hosseini, H. 2019. Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum) plant fertilized with soluble or insoluble P source. Ecotoxicology and Environmental Safety, 173:504-513. doi:https://doi.org/10.1016/j.ecoenv.2019.02.060Rezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H., Mirseyed Hosseini, H. 2020. Effect of Silicon and Phosphate-Solubilizing Bacteria on Improved Phosphorus (P) Uptake Is Not Specific to Insoluble P- Fertilized Sorghum (Sorghum bicolor) Plants. Journal of Plant Growth Regulation, 39 (1): 239-253. doi:10.1007/s00344-019-09978-xSaberian Ranjbar, S., Motesharezadeh, B., Moshiri, F., Mirseyed Hosseini, H., Alikhani, H. A. 2019. Silicon utilization efficiency of different wheat cultivars in a calcareous soil. Journal of Silicon, doi.org/10.1007/s12633-018-0038-3Saleh, J., Najafi, N., Oustan., S. h, Ghasemi-Golezani, K., Aliasghrzad, N. (2018). Silicon affects rice growth, superoxide dismutase activity and concentrations of chlorophyll and proline under different levels and sources of soil salinity. Journal of Silicon. doi.org/10.1007/s12633-018-0057-0.Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., Gobi, T. A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2: 587.Shi, Y., Wang, Y., Flowers, T. J., Gong, H. 2013. Silicon decreases chloride transport in rice (Oryza sativa) in saline conditions. Journal of Plant Physiology. 170(9): 847-853.Sinclair, S. A. and Krämer, U. 2012. The zinc homeostasis network of land plants. Biochim. Et. Biophys. Acta (BBA) Mol. Cell Res. 1823: 1553-1567.Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A. E., Kobayashi, S., Kawamura, Y., Tanaka, K., Inanaga, S. 2011. Effect of Si application on sorghum root responses to water stress. Journal of Plant Nutrition. 34: 71–82.Tavakkoli, E., Lyons, G., English, P., Guppy, C. N. 2011. Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation. Journal of Plant Nutrition. Soil Science. 174: 437-446.Tian, G. and Kolawole, G. O. 2004. Comparison of various plant residues as phosphate rock amendment on Savanna Soils of West Africa. Journal of Plant Nutrition. 27(4): 571-583.Waling, I., Van Vark, W., Houba, V., Vanderlee, J. 1989. Soil and plant analysis, a series of syllabi. Part. 7: 250.You-Qiang, F. U., Hong, S., Dao-Ming, W. U., Kun-Zheng, C. A. I. 2012. Silicon-mediated amelioration of Fe2+ toxicity in rice (Oryza sativa) roots. Pedosphere. 22: 795-802.Zargar, S. M., Mahajan, R., Bhat, J., Nazir, M and Deshmukh, R. 2019. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. Journal of Biotech, 9 (3): 73. |