- Angileri, S.E., C. Conoscenti, V. Hochschild, M. Märker, E. Rotigliano and V. Agnesi. 2016. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology, 262: 61-76.
- Azareh, A., O. Rahmati, E. Rafiei-Sardooi, J.B. Sankey, S. Lee, H. Shahabi and B.B. Ahmad. 2019. Modelling gully-erosion susceptibility in a semi-arid region, Iran: investigation of applicability of certainty factor and maximum entropy models. Science of the Total Environment, 655: 684-696.
- Benda, L. and T. Dunne. 1997. Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. Water Resources Research, 33: 2849-2863.
- Böhner, J. and T. Selige. 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. Gottinger Geographische Abhandlungen, 115: 13-28.
- Conoscenti, C., S. Angileri, C. Cappadonia, E. Rotigliano, V. Agnesi and M. Märker. 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology, 204(1): 399–411.
- Conoscenti, C., M. Ciaccio, N.A. Caraballo-Arias, A. Gómez-Gutiérrez, E. Rotigliano and V. Agnesi. 2015. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River Basin (Western Sicily, Italy). Geomorphology, 242: 49-64.
- Dickson, M.E. and G.L. Perry. 2016. Identifying the controls on coastal cliff landslides using machine-learning approaches. Environmental Modelling and Software, 76: 117-127.
- Felicĺsimo, Á., A. Cuartero, J. Remondo and E. Quirόs. 2013. Mapping landslide susceptibility with logistiv regression, multiple adaptive regression splines, classification and regression tress, amd maximum entropy methods: a comparative study. Landslides, 10: 175-189.
- Feizizadeh, B., M.S. Roodposhti, T. Blaschke and J. Aryal. 2017. Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping. Arabian Journal of Geosciences, 10(5): 112-122.
- Goetz, J.N., A. Brenning, H. Petschko and P. Leopold. 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers and Geosciences, 81: 1-11.
- Hoseinzadeh, M.M., M. Amini and B. Mirbagheri. 2012. Landslide zonation in the Googerd Watershed. Earth Science Research, 3(10): 98-110 (in Persian).
- Hong, H., B. Pradhan, C. Xu and D.T. Bui. 2015. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133: 266-281.
- Hong, H., B. Pradhan, M.N. Jebur, D.T. Bui, C. Xu and A. Akgun. 2016. Spatial prediction of landslide hazard at the luxi area (China) using support vector machines. Environmental Earth Sciences, 75(1): 1-14.
- Javidan, N., A. Kavian, H.R. Pourghasemi, C. Conoscenti and Z. Jafarian. 2020. Gully erosion susceptibility mapping using multivariate adaptive regression splines replications and sample size scenarios. Water, 11(11): 19-23.
- Kanungo, D.P., M.K. Arora, S. Sarkar and R.P. Gupta. 2006. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 2: 347-366.
- Kakembo, V., W.W. Xanga and K. Rowntree. 2009. Topographic thresholds in gully development on the hillslopes of communal areas in Ngqushwa local municipality, Eastern Cape, South Africa. Geomorphology, 110(3-4): 188-194.
- Kornejady, A., M. Ownegh and Bahremand. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 152: 144-162.
- Kornejady, A. and H.R. Pourghasemi. 2019. Landslide susceptibility assessment using data mining models, a case study: Chehel-Chai Basin. Scientific Information Database, 11(1): 28-42.
- Lee, S. and J. Choi. 2004. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50(6): 847-855.
- Marmion, M., J. Hjort., W. Thuiller and M. Luoto. 2008. A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish Lapland. Earth Surface Processes and Landforms, 33(14): 2241-2254.
- Mousavi, S.Z., A. Kavian, K. Soleimani, S.R. Mousavi and A. Shirzadi. 2011. GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards and Risk, 2(1): 33-50.
- Marjanović, M., M. Kovačević, B. Bajat and V.Voženílek. 2011. Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123(3): 225-234.
- Meinhardt, M., M. Fink and H. Tunschel. 2015. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology, 234: 80–97.
- Mohamadi, M. and H.R. Pourghasemi. 2017. Prioritization of effective factors on landslide occurrence and preparing sensitivity map using a new random forest algorithm, case study: part of Golestan. Journal of Watershed Management, 8(15): 161-170 (in Persian).
- Moghaddam, D.D., H.R. Pourghasemi and O. Rahmati. 2019. Assessment of the contribution of geo-environmental factors to flood inundation in a semi-arid region of SW Iran: comparison of different advanced modeling approaches. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. Springer, Cham, 59-78 pages.
- Ost, L., E.M. Van-Den, J .Poesen and M.C. Vanmaercke-Gottigny. 2003. Characteristics and spatial distribution of large land-slides in the Flemish Ardennes (Belgium). Zeitschrift für Geomorphologie, 47(3): 329-350.
- Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4): 231-259.
- Pradhan, B. and M.F. Buchroithner. 2010. Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environmental and Engineering Geoscience, 16(2): 107–126.
- Pourtaghi, Z.S., H.R. Pourghasemi. 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3): 643-662.
- Park, N.W. 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environmental Earth Sciences, 73(3): 937-949.
- Pourghasemi, H.R., M. Mohammady and B. Pradhan. 2012a. Landslide susceptibility mapping using index of entropy and conditional probability models in GS: Safarood Basin, Iran. Catena, 97: 71-84.
- Pourghasemi, H.R., H. Moradi and M. Fatemioghdas. 2012b. Landslide susceptibility mapping using adaptive neuro-fuzzy inference system in north of Tehran. Earth Science Research, 3(10): 63-78 (in Persian).
- Pourghasemi, H.R., A.G. Jirandeh, B. Pradhan, C. Xu and C. Gokceoglu. 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2): 349-369.
- Pourghasemi, H.R., S. Yousefi, A. Kornejady and A. Cerdà. 2017. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Science of the Total Environment, 609: 764–775.
- Pourghasemi, H.R. and O. Rahmati. 2018. Prediction of the landslide susceptibility: which algoritm, which precision? Catena, 162: 177-192.
- Rahmati, O., H.R. Pourghasemi and A.M. Melesse. 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena, 137: 360-372.
- Rahmati, O., S.A. Naghibi, H. Shahabi, D.T. Bui, B. Pradhan, A. Azareh, E. Rafiei-Sardooi, A.N. Samani and A.M. Melesse. 2018. Groundwater spring potential modelling: comprising the capability and robustness of three different modeling approaches. Journal of Hydrology, 565: 248–261.
- Solaimani, K., S.Z. Mousavi and A. Kavian. 2013. Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arabian Journal of Geosciences, 6(7): 2557-2569.
- Song, Y., J. Gong, S. Gao, D. Wang, T. Cui, Y. Li and B. Wei. 2012. Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China. Computers and Geosciences, 42: 189-199.
- Shirzadi, A. 2017. Prediction of surface landslides around Bijar City using innovative data mining algorithms. PhD Thesis, 225 pages (in Persian).
- Trigila, A., C. Iadanza, C. Esposito and G. Scarascia-Mugnozza. 2015. Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249: 119-136.
- Vorpahl, P., H. Elsenbeer, M. Mӓrker and B. Schröder. 2012. How can statistical models help to determine driving factors of landslides? Ecological Modelling, 239: 27-39.
- Walter, S.D. 2002. Properties of the Summary Receiver Operating Characteristic (SROC) curve for diagnostic test data. Stat Med, 21: 1237–1256.
- Yessilnacar, E.K. 2005. The application of computational intelligence of landslide susceptibility mapping in Turkey. PhD Thesis, Department of Geomatics the University of Melbourne, 423
- Yost, A.C., S.L. Petersen, M. Gregg and R. Miller. 2008. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecological Informatics, 3(6): 375-386.
- Yalcin, A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72: 1–12.
- Yamani, M., A. Ahmadabadi and G.h Zare. 2012. Implementation of SVM algoritm in mapping landslide in Darake Watershed. Journal of Geography and Natural Hazards, 3: 125-142 (in Persian).
|