Ahmadi, M., Dadashi Roudbari, A., Deyrmajai, A., 2020. Runoff estimation using ihacres model based on chirps satellite data and cmip5 models, case study: Gorganroud Basin-Aq Qala area. Iran J Soil Water Res. 51(3), 659-671.
Altunkaynak, A., 2009. Sediment load prediction by genetic algorithms. Adv. Eng. Softw. 40, 928-934.
Ayes Rivera, I., Callau Poduje, A.C., Molina-Carpio, J., Ayala, J.M., Armijos Cardenas, E., Espinoza-Villar, R., Espinoza, J.C., Gutierrez-Cori, O., Filizola, N., 2019. On the relationship between suspended sediment concentration, rainfall variability and groundwater: an empirical and probabilistic analysis for the Andean Beni River, Bolivia (2003–2016). Water 11(12), 2497.
Bowden, G.J., Maier, H.R., Dandy, G.C., 2002. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 38(2), 1-2.
Buyukyildiz, M., Kumcu, S.Y., 2017. An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models. Water Resour. Manag. 31(4), 1343-1359.
Chen, X.Y., Chau. K.W., 2019. Uncertainty analysis on hybrid double feedforward neural network model for sediment load estimation with LUBE method. Water Resour. Manag. 33(10), 3563-3577.
Chiang, J.L., Tsai, K.J., Chen, Y.R., Lee, M.H., Sun. J.W., 2014. Suspended sediment load prediction using support vector machines in the Goodwin Creek Experimental Watershed. Proceedings of the EGU General Assembly Conference, Munich, Germany.
Cho, J., Bosch, D., Lowrance, R., Strickland, T., Vellidis, G., 2009. Effect of spatial distribution of rainfall on temporal and spatial uncertainty of SWAT output. Transactions of the ASABE 52(5), 1545-1556.
Choubin, B., Malekian, A., 2017. Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environ. Earth Sci. 76(15), 1-10.
Cobaner, M., Unal, B., Kisi, O., 2009. Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J. Hydrol. 367(1-2), 52-61.
Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., Yang, L., Mekonnen, D.F., 2019. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. 569, 612-626.
Durrant, P.J., 2001. Wingamma a non-linear data analysis and modelling tool with applications to flood prediction. PhD Thesis, Cardiff University.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen. J., 2015. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2(1), 1-21.
Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359-366.
Jones, A.J., Evans, D., Margetts, S., Durrant, P.J., 2002. Heuristic and optimization for knowledge discovery. Chapter IX, Idea Group Publishing, Hershey, 142-162 pages.
Joshi, R., Kumar, K., Adhikari, V.P.S., 2016. Modelling suspended sediment concentration using artificial neural networks for Gangotri glacier. Hydrol. Process. 30(9), 1354-1366.
Kaufman, L., Rousseeuw, P.J., 2009. Finding groups in data: an introduction to cluster analysis, Vol. 344. John Wiley and Sons, New Jersey, USA.
Kaveh, K., Kaveh, H., Bui, M.D., Rutschmann, P., 2021. Long short-term memory for predicting daily suspended sediment concentration. Eng. Comput. 37(3), 2013-2027.
Khan, M.Y.A., Tian, F., Hasan, F., Chakrapani, G.J., 2019. Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India. Int. J. Sediment Res. 34(2), 95-107.
Kişi, Ö., Fedakar, H.I., 2014. Modeling of suspended sediment concentration carried in natural streams using fuzzy genetic approach. Computational Intelligence Techniques in Earth and Environmental Sciences, Springer, Dordrecht.
Kisi, O., Shiri, J., 2012. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Comput. Geosci. 43, 73-82.
Kohonen, T., 1998. The self-organizing map. Neurocomputing 21(1), 1-6.
Koncar, N., 1997. Optimisation methodologies for direct inverse neurocontrol. PhD Thesis, University of London.
Legates, D.R., McCabe, G.J., 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35(1), 233-241.
Li, X., Nour, M.H., Smith, D.W., Prepasc, A.A., 2010. Neural networks modeling of nitrogen export: model development and application to unmonitored boreal forest watersheds. Environ. Technol. 31(5), 495–510
Mansourfar, K., 2017. Advanced statistical methods: using applied software. University of Tehran Press (in Persian).
May, R.J., Maier, H.R., Dandy, G.C., 2010. Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw. 23,: 283-294.
Melesse, A.M., Ahmad, S., McClain, M.E., Wang, X., Lim, Y.H., 2011. Suspended sediment load prediction of river systems: an artificial neural network. Agric. Water Manag. 98(5), 855-866.
Muleta, M.K., 2011. Model performance sensitivity to objective function during automated calibrations. J. Hydrol. Eng. 17(6), 756-767.
Nour, M.H., Smith, D.W., Gamal El-Din, M., Prepas, E.E., 2006. Neural networks modelling of streamflow, phosphorus, and suspended solids: application to the Canadian Boreal forest. Water Sci. Technol. 53(10), 91-99.
Olyaie, E., Banejad, H., Chau, K.W., Melesse, A.M., 2015. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Environ. Monit. Assess. 187(4), 1-22.
Rezai Banafshe, M., Feyzolahpour, M., Sadrafshary, S., 2013. Using neural fuzzy inference system to estimate sediment load and a comparison with MLR and SRC models in Ghranghu River Basin. Phys. Geog. Res. Quarterly 45(2), 77-90.
Rodríguez-Blanco, M.L., Taboada-Castro, M.M., Palleiro-Suárez, L., Taboada-Castro, M.T., 2010. Temporal changes in suspended sediment transport in an Atlantic Catchment, NW Spain. Geomorphology 123(1), 181-188.
Sahoo, B.B., Dalai, C., Srikanth, B., Bhushan, M., 2022. Evaluation of daily suspended sediment load using deep learning models. Research Square, in Press.
Shams, S., Ratnayake, U., Rahman, E.A., Alimin, A.A., 2020. Analysis of sediment load under combined effect of rainfall and flow. Proceedings of the Second International Conference on Civil and Environmental Engineering, Langkawi, Kedah, Malaysia.
Sulugodu, B., Deka, P.C., 2019. Evaluating the performance of CHIRPS satellite rainfall data for streamflow forecasting. Water Resour. Manag. 33(11), 3913-3927.
Tabatabaei, M., Salehpour Jam, A., Hosseini, S.A., 2019. Suspended sediment load prediction using non-dominated sorting genetic algorithm II. Int. Soil Water Conserv. Res. 7(2), 119-129.
Tayfur, G., 2012. Soft computing in water resources engineering: artificial neural networks, fuzzy logic and genetic algorithms. WIT Press.
Tayfur, G., Guldal, V., 2006. Artificial neural networks for estimating daily total suspended sediment in natural streams. Hydrol. Res. 37(1), 69-79.
Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183-7192.
Teixeira, L.C., Mariani, P.P., Pedrollo, O.C., dos Reis Castro, N.M., Sari, V., 2020. Artificial neural network and fuzzy inference system models for forecasting suspended sediment and turbidity in basins at different scales. Water Resour. Manag. 34(11), 3709-3723.
Ulke, A., Tayfur, G., Ozkul, S., 2009. Predicting suspended sediment loads and missing data for Gediz River, Turkey. J. Hydrol. Eng. 14, 954-965.