دکترای آبیاری و زهکشی، گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران.
چکیده
در این پژوهش، اثر تنش شوری بر مقدار اجزاءِ تبخیر-تعرق ذرت (در مراحل اولیه، توسعه، میانی و پایانی رشد) و در مقیاس مینیلایسیمتر بررسی شد. تیمارهای شوری از طریق آب دارای هدایت الکتریکی (S0) 0/5، (S1)2/1، (S2)3/5 و (S3)5/7 دسی زیمنس بر متر اِعمال شد. آزمایش بهصورت فاکتوریل و در قالب طرح کاملاً تصادفی انجام شد. در کل دوره رشد، از تیمار S0تا S3،مقادیر تبخیر- تعرق در محدوده (420 -320)، تعرق(285-124) و تبخیر (196-135) میلیمتر اندازهگیری شد. بهطوریکه در اثر شوری،سهم تعرق گیاه (T/ETc) 29% کاهش و سهم تبخیر (E/ETc)به همان نسبت افزایش یافت. در مراحل مختلف رشد ذرت نیز واکنشهای مذکور مشاهده شد. از تیمار S0 تا S3، مقادیر تبخیر-تعرق، تعرق و تبخیر به ترتیب در محدوده 79-72، 19-10 و 61-62 میلیمتر (در مرحله اولیه)، 202-150، 150-71 و 51-79 میلیمتر (در مرحله توسعه)، 124-84، 110-39 و 14-45 میلیمتر (در مرحله میانی) و 15-14، 6-4 و 9-10 میلیمتر (در مرحله پایانی رشد) اندازهگیری شد. بیشترین تا کمترین سهم تعرق گیاه به ترتیب متعلق به مراحل توسعه، میانی، اولیه و پایانی رشد بود و در مورد سهم تبخیر، مربوط به مراحل اولیه، توسعه، میانی و پایانی رشد بود. در اثر تنش شوری، مقدار عملکرد زیستتوده خشک ذرت کاهش یافت و مقدار آن در تیمارهای S0، S1، S2و S3به ترتیب برابر با 12942، 12168، 10872 و 8928 کیلوگرم بر هکتار اندازهگیری شد. از سوی دیگر، ضرایب تنش تبخیر-تعرق (KS)، تعرق (KS-T)و تبخیر(KS-E) به ترتیب در بازه 1-0/76، 1-0/43 و 1-1/45 محاسبه شد. با استفاده از ضرایب مذکور میتوان در شرایط تنش شوری، مقادیر واقعی تبخیر-تعرق، تعرق و تبخیر را (نسبت به شرایط استاندارد منطقه) برآورد نمود. نیز، با هر دسی زیمنس بر متر افزایش شوری آب، مقادیر تبخیر-تعرق نسبی و تعرق نسبی به ترتیب 4/7% و 11/1% کاهش و مقدار تبخیر نسبی 9% افزایش داشت. و جزءِ تعرق نسبت به تبخیر-تعرق، با شیب بیشتری کاهش یافت.
Determination of Salinity Stress Coefficient in Different Growth Stages of Forage Maize
نویسندگان [English]
reza saeidi
PhD. of Irrigation and Drainage Engineering, Department of Water Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]
In this research, the effect of salinity stress on the amount of evapotranspiration components of maize were investigated in mini-lysimeters (in the initial, development, mid, and late growth stages). Salinity treatments were applied by water with EC of 0.5(S0), 2.1(S1), 3.5(S2), and 5.7(S3) dS.m-1. The experiment was performed as factorial and in a completely randomized design. For the whole growth period and for S0 to S3 treatments, the values of evapotranspiration, transpiration, and evaporation were measured in the range of 420-320, 285-124, and 135-196 mm, respectively. The share of crop transpiration (T/ETc) decreased by 29% while the share of evaporation (E/ETc) increased by the same value. From S0 to S3 treatment, the values of evapotranspiration, transpiration and evaporation were measured in the range of 420-320, 1 / 285-3 / 124 and 134-7 / 195.9 mm (in the whole growth period), respectively.From S0 to S3 treatments, the values of evapotranspiration, transpiration and evaporation were measured in the range of 79-72, 19-10 and 61-62 mm (initial stage), 202-150, 150-71, and 51-79 mm (development stage), 124-84, 110-39, and 14-45 mm (mid stage), and 15-14, 6-4, and 9-10 mm (the late stage). The shares of crop transpiration decreased in the order of the developmental, mid, initial, and the late stages, while the decreasing order for the shares of evaporation was related to the initial, developmental, mid, and late stages, respectively. The dry biomass yield decreased by salinity stress, and its amount in treatments S0, S1, S2, and S3 was as 12942, 12168, 10872, and 8928 kg.ha-1, respectively. Stress coefficients of evapotranspiration (KS), transpiration (KS-T), and evaporation (KS-E) were calculated in the range of 1-0.76, 1-0.43, and 1-1.45, respectively. The results showed that for 1 dS.m-1 increase in water salinity, the amounts of relative evapotranspiration and relative transpiration decreased by 4.7% and 11.1%, respectively, and the amount of relative evaporation increased by 9%. The results showed that the transpiration component decreased with a greater slope, relative to the evapotranspiration.
کلیدواژهها [English]
Growth stage sensitivity to salinity, Stress coefficients, Water absorption, Water salinity
مراجع
حسنلی، م. افراسیاب، پ. و ح. ابراهیمیان. 1394. ارزیابی مدلهای AquaCrop و SALTMED در تخمین عملکرد محصول ذرت و شوری خاک.مجله تحقیقات آب و خاک ایران. 46(3): 487-498.
حیدرینیا، م. ناصری، ع. برومندنسب، س. و م. الباجی. 1396. تأثیر آبیاری با آب شور بر تبخیر و تعرق و کارایی مصرف آب ذرت در مدیریتهای مختلف زراعی. مجله علوم و مهندسی آبیاری. 40(1/1): 99- 110.
دهقانی سانیج، ح. کنعانی، ا. و س. اخوان. 1396. ارزیابی تبخیر-تعرق ذرت و اجزای آن و ارتباط آنها با شاخص سطح برگ در سیستم آبیاری قطرهای سطحی و زیرسطحی. مجله آب و خاک. 31(6): 1549-1560.
سعیدی، ر. a اثر تنش خشکی و شوری در برآورد عملکرد ذرت علوفهای از طریق تبخیر-تعرق دورهای، با استفاده از مدلهای مختلف. مجله پژوهش آب در کشاورزی. 35(2): 107-122.
سعیدی، ر. b جداسازی تبخیر و تعرق در کشت ذرت و بررسی پاسخ آنها به سطوح مختلف آبیاری. مجله تحقیقات آب و خاک ایران. 52(5): 1263-1273.
سعیدی، ر. و ع. ستودهنیا. 1400. واکنش عملکرد به تبخیر-تعرق ذرت، تحت تأثیر تنش آبی در مراحل مختلف رشد (در دشت قزوین). مجله تحقیقات آب و خاک ایران. 52(3): 611- 620.
سعیدی، ر. رمضانی اعتدالی، ه. ستودهنیا، ع. نظری، ب. و ع. کاوریانی. 1399. مدیریت مصرف آب شور و کود نیتروژن در کشت ذرت. مجله آب و خاک. 34(4): 861- 877.
سعیدی، ر. رمضانی اعتدالی، ه. ستودهنیا، ع. کاویانی، ع. و ب. نظری. aتعیین روابط بین عملکرد و تبخیر-تعرق ذرت علوفهای، در شرایط تنش شوری و محدودیت نیتروژن.مجله پژوهش آب در کشاورزی. 32(3): 351-366.
سعیدی، ر. ستودهنیا، ع. رمضانی اعتدالی، ه. کاویانی، ع. و ب. نظری. b مطالعه تأثیر تنشهای شوری آب و حاصلخیزی خاک، بر تبخیر و تعرق ذرت علوفهای. مجله تحقیقات آب و خاک ایران. 49(4): 945- 954.
میرزایی الموتی، ل. و ه. رمضانی اعتدالی. 1396. بررسی اثر مدیریتهای مختلف آبیاری بر سهم مجزا تبخیر و تعرق با استفاده از مدل AquaCrop. چهاردهمین همایش ملی آبیاری و کاهش تبخیر. 3 الی 4 آبان ماه، دانشگاه شهید باهنر کرمان، کرمان.
Allen, R. G. Pereira, L. S. Raes, D. and M. Smith. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper No.56, 1-326.
Azizian, A. and A. R. Sepaskhah. 2014. Maize response to water, salinity and nitrogen levels: yield-water relation, water-use efficiency and water uptake reduction function. Journal of plant production. 8(2): 183- 214.
Doorenbos, J. and W. O. Pruitt. 1977. Guidelines for predicting crop water requirements, Food and agriculture organization (FAO) of the United Nations, Irrigation and drainage paper No. 24. Rome, Italy.
Farooq, M. Hussain, M. Wakeel, A. and Kadambot, H. M. 2015. Salt stress in maize: effects, resistance mechanisms, and management. Institute national de la recherché agronomies (INRA). 35: 461-481.
Ferreira, M. I. Silvestre, J. Conceic, N. and A. C. Malheiro. 2012. Crop and stress coefficients in rain fed and deficit irrigation vineyards using sap flow techniques. Journal of irrigation science. 30: 433–447
Gimenez, L. Petillo, M. G. Paredes, P. and L. S. Pereira .2016. Predicting maize transpiration, water use and productivity for developing improved supplemental irrigation schedules in western Uruguay to cope with climate variability. Journal of water. 8(309): 1-22.
Guo, T. Liu, C. Xiang, Y. Zhang, P. and R. Wang. 2021. Simulations of the soil evaporation and crop transpiration beneath a maize crop canopy in a humid area. Journal of water. 13(14): 1-13.
Lacerda, C. F. Ferreira, J. F. S. Liu, X. and D. L. Suarez. 2016. Evapotranspiration as a criterion to estimate nitrogen requirement of maize under salt stress. Journal of agronomy and crop science. 202 (2016): 192-202.
Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Journal of plant biology. 59: 651-681.
Saeidi, R. Ramezani Etedali, H. Sotoodenia, A. Kaviani, A. and B. Nazari. 2021. Salinity and fertility stresses modifies and readily available water coefficients in maize (Case study: Qazvin region). Journal of irrigation science. 39: 299- 313.
Trout, T. J. and K. C. Dejonge .2017. Water productivity of maize in the US high plains. Journal of irrigation science. 35: 251–266.
Xiao, X. Sauer, T. J. Singer, J. W. Horton, R. Ren, T. and J. L. Heitman. 2016. Partitioning evaporation and transpiration in a maize field using heat-pulse sensors for evaporation measurement.Journal of American society of agricultural and biological engineers. 59(2): 591- 599.
Xin, H. Peiling, Y. Shumei, R. Yankai L. Guangyu, J. and L. Lianhao. 2016. Quantitative response of oil sunflower yield to evapotranspiration and soil salinity with saline water irrigation. Journal of Agriculture and Biology Engineering. 9(2): 63-73.
Zhou, S. Liu, W. and W. Lin. 2017. The ratio of transpiration to evapotranspiration in a rain fed maize field on the Loess Plateau of China.Journal of water science and technology. 17(1): 221-228.