شیرانی, حسین, رفیعنژاد, نغمه. (1390). برآورد برخی ویژگیهای دیریافت خاکهای استان کرمان با استفاده از توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی. سامانه مدیریت نشریات علمی, 25(4), 349-359. doi: 10.22092/ijsr.2012.126517
حسین شیرانی; نغمه رفیعنژاد. "برآورد برخی ویژگیهای دیریافت خاکهای استان کرمان با استفاده از توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی". سامانه مدیریت نشریات علمی, 25, 4, 1390, 349-359. doi: 10.22092/ijsr.2012.126517
شیرانی, حسین, رفیعنژاد, نغمه. (1390). 'برآورد برخی ویژگیهای دیریافت خاکهای استان کرمان با استفاده از توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی', سامانه مدیریت نشریات علمی, 25(4), pp. 349-359. doi: 10.22092/ijsr.2012.126517
شیرانی, حسین, رفیعنژاد, نغمه. برآورد برخی ویژگیهای دیریافت خاکهای استان کرمان با استفاده از توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی. سامانه مدیریت نشریات علمی, 1390; 25(4): 349-359. doi: 10.22092/ijsr.2012.126517
برآورد برخی ویژگیهای دیریافت خاکهای استان کرمان با استفاده از توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی
1استادیار گروه علوم خاک دانشگاه ولی عصر (عج) رفسنجان
2دانشجوی سابق کارشناسی ارشد علوم خاک دانشگاه ولی عصر (عج) رفسنجان
چکیده
اندازهگیری برخی از ویژگیهای مهم خاک، ممکن است دشوار، بسیار وقتگیر و پرهزینه باشد. بنابراین، تخمین این گونه از ویژگیهای خاک با استفاده از ویژگیهای زودیافت خاک، میتواند مفید باشد. به این روابط، توابع انتقالی خاک (PTFs) میگویند. این پژوهش بهمنظور ایجاد توابع انتقالی خاک برای برآورد گنجایش زراعی (FC)، نقطه پژمردگی دائم (PWP) و گنجایش تبادل کاتیونی خاک (CEC) برای خاکهای استان کرمان انجام شد. بنابراین، تعداد 100 نمونه خاک از مناطق مختلف استان کرمان (کرمان، بردسیر، رفسنجان، شهربابک، سیرجان و ارزوئیه بافت) و از لایه صفر تا 30 سانتیمتر گرفته شد. سپس ویژگیهای دیریافت (FC ، PWP و CEC) و زودیافت (درصد رس، سیلت، شن، آهک، ماده آلی و گچ) خاکها اندازهگیری گردید. در روش رگرسیون، برای FC درصد رس، شن و گچ، برای PWP درصد رس و برای CEC درصد رس و ماده آلی، اثرات معنیداری در مدلهای ایجادشده نشان دادند. ضرایب تبیین (R2) بهترتیب برای FC، PWP و CEC برابر 86/0، 45/0 و 94/0 محاسبه شدند. بهترین PTFs ها توسط شبکه عصبی مصنوعی برای FC، PWP و CEC با 6 لایهی پنهان و در نظر گرفتن تمامی ورودیها بهدست آمد (ضریب تبیین بهترتیب برابر 98/0، 93/0 و 99/0). دقت در روش شبکه عصبی نسبت به روش رگرسیون بیشتر بود. نتایج نشان داد که اگر تعداد ویژگیهای زودیافت اندازهگیریشده زیاد نباشند، میتوان از مدلهای رگرسیونی با دقت قابل قبولی استفاده کرد. اگر تعداد ویژگیهای زودیافت اندازهگیریشده زیاد بود، آنگاه مدل شبکه عصبی، نتایج بسیار دقیقتری ارائه مینماید. دقت مدل شبکه عصبی با کاهش تعداد پارامترهای زودیافت (ورودیها)، کاهش یافت.
Prediction of Some Difficult-to-measure Soil Characteristics Using Regression Pedotransfer Functions and Artificial Neural Network in Kerman Province
نویسندگان [English]
Hossein Shirani1؛ N. Rafienejad2
1Assistant Prof.essor, Vali-e-Asr University of Rafsanjan, College of Agriculture, Soil Science Department
2Former Graduate Student, Vali-e-Asr University of Rafsanjan. College of Agriculture. Soil Science Department
چکیده [English]
Measurement of some important soil characteristics may be difficult, time-consuming, and expensive. Thus, it is helpful to predict these properties using easily-available soil properties. These relationships and/or functions are calledpedotransfer functions (PTFs). This study was conducted to derive PTFs for estimating field capacity (FC), permanent wilting point (PWP), and cation exchange capacity (CEC) of soils in Kerman Province. Hundred soil samples (0‒30 cm layer) were collected from different locations in Kerman Province including: Kerman, Bardsir, Rafsanjan, Shahre-Babak, Sirjan and Orzoueiyeh of Baft. Then, FC, PWP, CEC, clay, silt, sand, carbonate, organic matter and gypsum contents of the soils were measured. In the regression method, clay, sand, and gypsum contents significantly affected the FC prediction, whereas clay content entered as effective input in the derived model for PWP, and clay and organic matter contents had significant effects on the CEC. Coefficients of determination (i.e. R2) of 0.86, 0.45 and 0.94 were calculated for FC, PWP, and CEC regression models, respectively. The best PTFs were obtained by artificial neural network (ANN) for FC, PWP and CEC with 6 hide layers and including all the input variables (R2 values of 0.98, 0.93 and 0.99, respectively). The accuracy of ANN predictions was greater than that of regression method. Results revealed that regression models can be applied with acceptable accuracy if a few easily-available characteristics are measured. The ANN method presented highly accurate results when the number of known easily-available characteristics increased. The accuracy of ANN decreased with reducing the number of inputs.
بایبوردی، م. 1382. فیزیک خاک. چاپ هفتم. انتشارات دانشگاه تهران. 671 صفحه.
منهاج، م.م. 1389. مبانی شبکههای عصبی. چاپ هفتم. انتشارات دانشگاه صنعتی امیرکبیر. 715 صفحه.
Agyare W.A., J. Park, and P.L.G. Vlek. 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone J. 6:423-431.
Aina P.O and S.P. Periaswamy. 1985. Estimating available water-holdi ng capacity of western Nigerian soils from soil texture and bulk density, using core and sieved samples. Soil Sci. 140:55–58.
Bell, M. A., and H. Van Keulen. 1995. Soil pedotransfer functions for four Mexican soils. Soil Sci. Soc. Am. J. 3:865-871.
Bouma J. 1989. Using soil survey data for quantitative land evaluation. Adv Soil Sci. 9 :177–213.
Cazemier, D.R., P. Lagacherie, and R.M. Clouaire. 2001. A possibility theory approach for estimating available water capacity from imprecise Information contained in soil data bases. Geoderma. 103:113-132.
Ghorbani Dashtaki, S., M. Homaee and H. Khodaverdiloo.2011. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management. 26: 68–74.
Haverkamp, R., F.J. Leij, C. Fuentes, A. Sciortino, and P.J. Ross. 2005. Soil water retention. I. Introduction of shape index. Soil Sci. Soc. Am. J. 69:1881-1890.
Horn R., H. Fleige, F.H. Richter, E. A. Czyz, A. Dexter, E. Diaz-Pereira Damitru, R. Enarche, F. Mayol, K. Rajkai, D. Delarosa, and C. Simota. 2005. SIDASS project 5: prediction of mechanical strength of arable soils and its effects on physical properties at various map scales. Soil and Tillage. Res. 82:47-56.
Hutson, J.L. and A. Cass. 1987. A retentivity function for use in soil-water simulation models. J Soil Sci. 38:105–113.
Klute, A. 1986. Water retention: Laboratory methods.In: Klute, A.(ed.). Methods of soil analysis, part1, physical and mineralogical methods (2nd Edition). ASA Monog. No. 9. Madison, , 635-662.
Krogh, L., H.B. Madsen, and M.H. Greve. 2000. Cation-exchange capacity pedotransfer functions for Danish soils. Soil Sci. Soc. Am. J. 50:1-12.
Merdun H., O. Cinar, R. Meral, and M. Apan. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Res. 90:108-116.
Mosaddeghi, M.R. and A. Mahboubi.2011. Point pedotransfer functions for prediction of water retention of selected soil series in a semi-arid region of western Iran. Archives of Agronomy and Soil Science. 57: 327-342.
Pachepsky Y.A., and W.J. Rawls. 1999. Accuracy and reliability of pedotransfer functions as affected by grouping Soils. Soil Sci. Soc. Am. J. 63:1748-1757.
Person M., B. Sivakumar, R. Berndtsson, O.H. Jacobsen, and P. Jonning. 2002. Predicting the dielectric constant-water content relationship using artificial neural networks. Soil Sci. Soc. Am. J. 66:1424-1429.
Raghavendra B.J., B.P. Mohanty, and E.P. Springer. 2007. Multiscale pedotransfer function for soil water retention. Vadose Zone J. 6:868- 878.
Rawls W.J. and Pachepsky Y.A. 2002. Soil consistence and structure as predictors of water retention. Soil Sci. Soc. Am. J. 66:1115-1126.
Ryan, J., G. Estefan and A. Rashid. 2001. Soil and plant analysis laboratory manual. Second edition. Jointly published by International Center for Agricultural Research in the Dry Areas (ICARDA) and the National Agricultural Research Center (NARC). Available from ICARDA, Aleppo, Syria. 172 pp.
Salchow E., R. Lal, N.R. Fausey and A. Ward. 1996. Pedotransfer functions for variable a lluvial soils in Southern Ohio. Geoderma. 73:165–181.