- Abbas-Zadeh, P., H. Asadi-Rhmani, N. Saleh-Rastin, K. Khvazi, and A.A. Soltani. 2009. Evaluation of auxin production from fluorescent pseudomonads and their effects on canola (Brassica napus). Iran. J. Soil Water Sci. 22(2): 203-215
- Abbas-Zadeh, P., N. Saleh-Rastin, H. Asadi-Rahmani, K. Khavazi, A. Soltani, R. Shoary-Nejati, and M. Miransari. 2010. Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta. Physiol. Plant 32:281–288
- Ahmad, F., I. Ahmad, and M. Sahir khan. 2005. Indoleacetic acid production by indigenous isolates of azotobacter and fluorescent pseudomonads in the presence and absence of tryptophan. Turk. J. Biol. 29: 29-34.
- Alexander, D.B., and D. A. Zuberer. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12: 39-45.
- Ali, B., A.N. Sabri, K. Ljung, and S. Hasnain. 2009a. Quantification of indole-3-acetic acid from plant associated Bacillusand their phytostimulatory effect on Vigna radiata (L.).World J. Microbiol. Biotechnol. 25:519–526
- Amico, E.D., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162.
- Asghar, H.N., Z.A. Zaeir., and M. Arshad. 2004. Screening rhizobacteria for improving the growth ,yield,and oil cotent of canola (Brassica napus).Aust. J.Agric. Res.55:187-194.
- Blumer, C., and D. Hass. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosenthesis. Arch. Microbiol. 173(3): 170-177.
- Cakmak, 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification. Plant Soil 302:1–17.
- Chen, Y., E. Jurkevitch, E. Bar-Ness, and Y. Hadar. 1994. Stability constants of pseudobactin complexes with transition metals. Soil Sci. Soc. Am. J. 58:390-396.
- Cheng, Z., E. Park, and B.R. Glick. 2007. 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. J. Microbiol. 53(7):912-8.
- DiSimine, C.D., J.A. Sayer, and G.M. Gadd. 1998. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated form a forest soil. Biol. Fertil. Soils 28: 87-94.
- Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences. 22(2): 107-149.
- Donate-Correa, J., M. Leon-Barrios, and R. Perez-Galdona. 2004. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Island. Plant Soil. 266: 261-272.
- Echeverria, S.R., M.A.P. Fernandez, S. Vlaar, and T. Finnan. 2003. Analysis of the legume–rhizobia symbiosis in shrubs from central western Spain. J. Appl. Microbiol. 95: 1367–1374.
- Glick, B.R. 1995. The enhacement of plant growth by free-living bacteria. J. Microbiol. 41: 109-117.
- Hotz, C., and KH. Brown. 2004. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 25:94–204.
- Huang, X.D. 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils.Environ. Pollut. 130: 465–476.
- Iqbal, U., N. Jamil, Ali, and H. Hasnain. 2010. Effect of zinc-phosphate-solubilizing bacterial isolates on growth of Vigna radiata. Ann. Microbiol. 60:243–248.
- Jeon, J.S., S.S. Lee, H.Y. Kim, T.S. Ahn, and H.G. Song. 2003. Plant growth promoting in soil by some inoculated microorganism. J. Microbiol.271-276.
- Kalbasi, M., G.J. Racz, and A. Lewen-Rudgers. 1978. Reaction products and solubility of applied zinc compounds in some Manitoba soils. Soil Sci. 125:55–64.
- Meyer, J.M. 2000. Pyoverdins: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas Arch. Microbiol. 174: 135-142
- O,Sullivan, D.J., and F. O,Gara. 1992. Traits of Pseudomonas fluorescens Involved in suppression of plant root pathogens. Microbial. Rev. 56: 662-676.
- Ping, L., and W. Boland. 2004.Signals from the underground: bacterial volatiles promote growth in Arabidopsis.Trends. plant. Sci.9: 263-266.
- Raj, A. 2002. Biofertilizers for Micronutrients. Biofert. News Lett. 10:8–10.
- Rashid, M.S., N. Khalil, S. Ayub, S. Alam, and F. Latif. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions.Pak.J. Biol. Sci.7(2) 187-196.
- Saharan, B.S,. and V. Nehra. 2011. plant Growth Promoting Rhizobacteria: A Critical Review. Life Sci. Med. Res. 21:1-30
- Saleem, M., M. Arshad, S. Hussain, and A. Bhatti. S.2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34:635–648.
- Sarathambalm C., M. Thangaraju, C. Paulraj, and M. Gomathy. 2010. Assessing the Zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labelled 65Zn compounds. Indian J. Microbiol.50 (1):103-109.
- Saravanan, V.S., S.R. Subramoniam, and A. Ra. 2003. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Braz. J. Microbiol. 34:121-125.
- Seshadre, S., Muthukumarasamy, R., Lakshminarasimhan, C. And Ignaacimuthu, S. 2002. Solubilization of inmorganic phosphates by azospirillum halopraeferans. Curr. Sci. 79(5): 565-567.
- Shahab, S., and N. Ahmed. 2008. Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. Afr. J. Biotechnol. 7(10): 1543-1549.
- Singh, M.V. 2001. Evaluation of current micronutrient stocks in different agro ecological zones of India for sustainable crop production. Fert. News 46:25–28.
- Sundara, B., V. Natarajan, and K. Hari. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Res.77:43-49.
- Tolay, I., B. Erenoglu, and Cakmak. 2001. Phytosiderophore release in Aegilopsis and Triticum species under zinc and iron deficiencies. J. Exper. Bot. 52:1093-1099.
- Zaidi, S., S. Usmani, B.R. Singh, and J. Musarrat. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991–997.
- Zhang, S., M.S. Reddy, and J.W. Kloepper. 2002. Development of Assays for Assessing Induced Systemic Resistance by Plant Growth-Promoting Rhizobacteria against Blue Mold of Tobacco. Biol. Control 23: 79–86.
|