-
Aminghafari, M., 2016. Time series forecasting-from elementary to advance with applications in R. Amir Kabir University of Technology, 258p.
-Azizi, M., Khosravi, M. and Pourreza, M., 2020. Frequency of fire incidence in relation to Zagros forests and rangelands physiography (Kermanshah province) using MODIS Active Fire Data. Iranian Journal of Forest and Range Protection Research, 18: 42-55.
-Brockwell, P.J. and Davis, R.A., 1996. Introduction to time series and forecasting. Springer Verlag, New York, Inc., 449p.
-Costafreda-Aumedes, S., Comas, C. and Vega-Garcia, C., 2017. Human-caused fire occurrence modelling in perspective: a review. International Journal of Wildland Fire, 26: 983-998.
-Eskandari, S. and Chuvieco, E., 2015. Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 42: 57-64.
-Ferreira, L.N., Vega-Oliveros, D.A., Zhao, L., Cardoso, M.F. and Macau, E.E.N., 2020. Global fire season severity analysis and forecasting. arXiv, 1903, 06667v3:1-16.
-Garavand, S., Yaralli, N. and Sadeghi, H., 2013. Spatial pattern and mapping fire risk occurrence at natural lands of Lorestan province. Iranian Journal of Forest and Range Protection Research, 21: 231-242 (In Persian).
-Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L. and Justice, C.O., 2018 The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 217: 72-85.
-Giglio, L., Schroeder, W. and Justice, C.O., 2018. MODIS collection 6 active fire product user's guide, revision B. Technical Report, University of Maryland, 64p.
-Huesca, M., Litago, J., Merino-de-Miguel, S., Cicuendez-López-Ocaña, V. and Palacios- rueta, A., 2014. Modeling and forecasting MODIS-based Fire Potential Index on a pixel basis using time series models. International Journal of Applied Earth Observation and Geoinformation, 26: 363.
-Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang E. and Yasmeen, F., 2021. Forecast: Forecasting functions for time series and linear models. R package version 8,14.
-Jaafari, A., Mafi Gholami, D. and Zenner, E., 2017. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological Informatics, 39: 32-44 (In Persian).
-Jazirehi, M.H. and Ebrahimi Rastaghi, M., 2003. Silviculture in Zagros. University of Tehran, Tehran, 560p (In Persian).
-Jiménez-Ruano, A., Rodrigues, M. and de la Riva Fernández, J., 2020. Fire regime dynamics in mainland Spain. Part 2: a near -future prospective of fire activity. Science of the Total Environment, 705: 135842.
-Kouassi, J-L., Wandan, N. and Mbow, C., 2020. Predictive modeling of wildfire occurrence and damage in a Tropical Savanna ecosystem of west Africa. Fire, 3: 42.
-Krebs, P., Pezzatti, G.B., Mazzoleni, S., Talbot, L.M. and Conedera, M., 2010. Fire regime: history and definition of a key concept in disturbance ecology. Theory in Biosciences, 129: 53-69.
-Liu, T., Mickley, L.J., Marlier, M.E., DeFries, R.S., Khan, M.d.F., Latif, M.T. and Alexandra, K., 2020. Diagnosing spatial biases and uncertainties in global fire emissions inventories: Indonesia as regional case study. Remote Sensing of Environment, 237: 111557.
-Liu, Y., Stanturf, J. and Goodrick, S., 2010. Trends in global wildfire potential in a changing climate. Forest Ecology and Management, 259: 685-697.
-Miller, J.D., Safford, H.D., Crimmins, M. and Thode, A.E., 2009. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade mountains, California and Nevada, USA. Ecosystems, 12: 16-32.
-Nemati Paykani, M. and Jalilian, N., 2012. Medicinal plants of Kermanshah province. Taxonomy and Biosystematics, 4: 69-78.
-Oliveira, S., Rocha, J. and Sá, A., 2021. Wildfire risk modeling. Current Opinion in Environmental Science and Health, 23: 100274.
-Pourreza, M., Hosseini, S.M., Safari Sinegani, A.A., Matinizadeh, M. and Dick, W.A., 2014. Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma, 213: 95-102.
-Pourreza, M., Safari, H., Khodakarami, Y. and Mashayekhi, SH., 2009. Preliminary results of post-fire resprouting of manna oak (Quercus brantii Lindl.) in the Zagros forests, Kermanshah. Iranian Journal of Forest and Poplar Research, 17: 225-236.
-Renard, Q., Pe´lissier, R., Ramesh, B.R. and Kodandapani, N., 2012. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21: 368-379.
-Rodrigues, M., Miguel, J.S, Oliveira, S., Moreira, F. and Camia, A., 2013. An insight into spatial-temporal trends of fire ignitions and burned areas in the European Mediterranean countries. Journal of Earth Science and Engineering, 3: 497-505.
-Satendra and Kaushik, A.D., 2014. Forest fire diaster management. National Institute of Disaster Management, Ministry of Home Affairs, New Delhi, 302p.
-Viganó, H.H.d.G., Souza, C.C.de., Reis Neto, J.F., Cristaldo, M.F. and Jesus, L.de. 2018. Prediction and modeling of forest fires in the Pantanal. Marcia Ferreira Cristaldo, Leandro de Jesus, 33: 306-316.
-Wahyuningsih, S., Goejantoro, R., Siringoringo, M., Saputra, A.R. and Aminah, S., 2019. Application seasonal autoregressive integrated moving average to forecast the number of east Kalimantan hotspots. Journal of Physics: Conference Series, 1351, 012085.
-Wuertz, D., 2020. TimeSeries: Financial Time Series Objects (Rmetrics). R package version, 3062, 100.
-Ye, T., Wang, Y., Guo, Z.X. and Li, Y.J., 2017. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in east China. PLoS ONE, 12: e0172110.