Jelokhani, M, Vazir, B, Zendehdel, M, Jahandideh, A. (1401). Interactions of Cholecystokinin and Glutamatergic Systems in Feeding Behavior of Neonatal Chickens. سامانه مدیریت نشریات علمی, 77(2), 681-688. doi: 10.22092/ari.2022.357300.2015
M Jelokhani; B Vazir; M Zendehdel; A Jahandideh. "Interactions of Cholecystokinin and Glutamatergic Systems in Feeding Behavior of Neonatal Chickens". سامانه مدیریت نشریات علمی, 77, 2, 1401, 681-688. doi: 10.22092/ari.2022.357300.2015
Jelokhani, M, Vazir, B, Zendehdel, M, Jahandideh, A. (1401). 'Interactions of Cholecystokinin and Glutamatergic Systems in Feeding Behavior of Neonatal Chickens', سامانه مدیریت نشریات علمی, 77(2), pp. 681-688. doi: 10.22092/ari.2022.357300.2015
Jelokhani, M, Vazir, B, Zendehdel, M, Jahandideh, A. Interactions of Cholecystokinin and Glutamatergic Systems in Feeding Behavior of Neonatal Chickens. سامانه مدیریت نشریات علمی, 1401; 77(2): 681-688. doi: 10.22092/ari.2022.357300.2015
Interactions of Cholecystokinin and Glutamatergic Systems in Feeding Behavior of Neonatal Chickens
1Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
3Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده
This study aimed to assess the possible feeding behavior alterations by central interactions of cholecystokinin (CCK) and glutamatergic systems in neonatal chickens. In experiment 1, chickens received intracerebroventricular (ICV) administration of saline and CCK (CCK4; 0.25, 0.5, and 1 nmol). In experiment 2, birds were ICV injected with saline, CCK8s (0.25, 0.5, and 1 nmol). In experiment 3, chickens received the ICV injection of saline, CCK8s (1 nmol), MK-801 (15 nmol), and co-injection of the CCk8s+MK-801. Experiments 4-7 were performed similar to experiment 3, except for chickens that were injected with CNQX (390 nmol), AIDA (2 nmol), LY341495 (150 nmol), and UBP1112 (2 nmol) instead of MK-801. Subsequently, the total amount of the consumed food was determined. According to the results, the ICV administration of CCK4 (0.25, 0.5, and 1 nmol) could not affect the food intake in chickens (P>0.05). The ICV injection of the CCK8s (0.25, 0.5, and 1 nmol) led to a dose-dependent hypophagia (P<0.05). Moreover, hypophagia induced by CCK8s decreased by the co-injection of the CCK8s+MK-801 (P<0.05). These results showed that the hypophagic effects of the CCK on food intake can be mediated by NMDA glutamate receptors in layer-type chickens.
تداخلات سیستم های گلوتامات ارژیک و کوله سیستوکینین در رفتار تغذیه ای جوجه های نوزاد
چکیده [English]
هدف از این مطالعه ارزیابی تغییرات احتمالی رفتار تغذیه ای به وسیله تداخلات مرکزی سیستم های گلوتامات ارژیک و کوله سیستوکینین (CCK) در جوجه های نوزاد بود. در آزمایش 1، جوجه ها تزریق داخل بطنی مغزی (ICV) سالین و کوله سیستوکینین(CCK4؛ 0.25، 0.5 و 1 نانومول) دریافت کردند. در آزمایش 2، پرندگان بصورت داخل بطن مغزی با سالین، (CCK8s ؛ 0.25، 0.5 و 1 نانومول) تزریق شدند. در آزمایش 3، جوجه ها تزریق داخل بطنی مغزی سالین، CCK8s (1نانومو)، MK-801 (15نانومول) و تزریق همزمان CCk8s و MK-801 را دریافت کردند. آزمایشات 4-7 مشابه آزمایش 3 انجام شد، به جز اینکه جوجه ها CNQX (390 نانومول)، AIDA (150 نانومول)، LY341495(150 نانومول) و UBP1112 (2 نانومول) را بجای MK-801 دریافت کردند. سپس مقدار کل غذای مصرفی مشخص شد. بر اساس نتایج، تجویز CCK4( 0.25، 0.5 و 1 نانومول) نتوانست دریافت غذا را در جوجه ها تحت تأثیر قرار دهد (P>0.05). تزریق داخل بطنی مغزی CCK8s ( 0.25، 0.5 و 1 نانومول) منجر به هیپوفاژی وابسته به دوز شد (P<0.05). همچنین هیپوفاژی ناشی از CCK8s با تزریق همزمان CCK8s + MK-801 کاهش یافت (P<0.05). این نتایج نشان داد که اثرات هیپوفاژیک CCK بر مصرف غذا احتمالا میتواند توسط گیرندههای NMDA گلوتامات در جوجههای تخمگذار میانجی گری شود.
Zendehdel M, Hassanpour S, Movahedi N. Central and peripheral methylamine-induced hypophagia is mediated via nitric oxide and TAAR1 in neonatal layer-type chicken. Neurosci Lett. 2020;739:135408.
Zendehdel M, Lankarani Mohajer L, Hassanpour S. Central muscarinic receptor subtypes (M1 and M3) involved in carbacol-induced hypophagia in neonatal broiler chicken. Int J Neurosci. 2020;130(2):204-11.
Tachibana T, Matsuda K, Kawamura M, Ueda H, Khan MS, Cline MA. Feeding-suppressive mechanism of sulfated cholecystokinin (26–33) in chicks. Comp Biochem Physiol Mol Integr Physiol. 2012;161(4):372-8.
Rehfeld JF. Measurement of cholecystokinin in plasma with reference to nutrition related obesity studies. Nutr Res. 2020;76:1-8.
Maniscalco JW, Edwards CM, Rinaman L. Ghrelin signaling contributes to fasting-induced attenuation of hindbrain neural activation and hypophagic responses to systemic cholecystokinin in rats. Am J Physiol Regul Integr Comp Physiol. 2020;318(5):R1014-23.
Hettes SR, Gonzaga WJ, Heyming TW, Nguyen JK, Perez S, Stanley BG. Stimulation of lateral hypothalamic AMPA receptors may induce feeding in rats. Brain Res. 2010; 1346:112-120.
Mortezaei SS, Zendehdel M, Babapour V, Hasani K. The role of glutamatergic and GABAergic systems on serotonin- induced feeding behavior in chicken. Vet Res Commun. 2013; 37:303-310.
Fasano C, Rocchetti J, Pietrajtis K, Zander JF, Manseau F, Sakae DY, Marcus-Sells M, Ramet L, Morel LJ, Carrel D, Dumas S. Regulation of the hippocampal network by VGLUT3-positive CCK-GABAergic basket cells. Front Cell Neurosci. 2017;11:140.
Deng PY, Xiao Z, Jha A, Ramonet D, Matsui T, Leitges M, Shin HS, Porter JE, Geiger JD, Lei S. Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability. J Neurosci. 2010;30(15):5136-48.
Minaya DM, Larson RW, Podlasz P, Czaja K. Glutamate-dependent regulation of food intake is altered with age through changes in NMDA receptor phenotypes on vagal afferent neurons. Physiol Behav. 2018;189:26-31.
Olanrewaju HA, Purswell J, Collier SD, Branton SL. Effects of light ingress through ventilation fan apertures on selected blood variables of male broilers. Int J Poult Sci. 2017; 16: 288-295.
Davis JL, Masuoka DT, Gerbrandt LK, Cherkin AA. Autoradiographic distribution of L- proline in chicks after intracerebral injection. Physiol Behav. 1979; 22(4): 693-695.
Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegava S. The central corticotropin-releasing factor and glucagon-like peptide -1 in food intake of the neonatal chick. Eur J Pharmacol. 1997; 339(2): 211-214.
Van Tienhoven A, Juhasz L.P. The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J Comp Neurol. 1962; 118:185-197.
Saito ES, Kaiya H, Tachibana T, Denbow DM, Kangawa K, Furuse M. Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept. 2005;125: 201-208.
Rust VA, Crosby KM. Cholecystokinin acts in the dorsomedial hypothalamus of young male rats to suppress appetite in a nitric oxide-dependent manner. Neurosci Lett. 2021; 764: 136295.
Cawthon CR, Claire B. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides. 2021;138:170492.
Wu X, Li JY, Lee A, Lu YX, Zhou SY, Owyang C. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight. 2020;5(14).
Sutton GM, Patterson LM, Berthoud HR. Extracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin-induced suppression of food intake in rats. J Neurosci. 2004;24(45):10240-7.
Hashimotodani Y, Karube F, Yanagawa Y, Fujiyama F, Kano M. Supramammillary nucleus afferents to the dentate gyrus co-release glutamate and GABA and potentiate granule cell output. Cell Rep. 2018;25(10):2704-15.
Hou X, Rong C, Wang F, Liu X, Sun Y, Zhang HT. GABAergic System in Stress: Implications of GABAergic Neuron Subpopulations and the Gut-Vagus-Brain Pathway. Neural Plast. 2020;2020.