- Abu-Eishah, S. I., El-Jallad, I. S., Muthaker,M., Touqan, M. and Sadeddin, W. 1991. Beneficiation of calcareous phosphate rocks using dilute acetic acid solutions: optimisation of operating conditions for Ruseifa (Jordan) phosphate, nternational Journal of Mineral Processing, 31:1-2, pp. 115–126,.
- Ahemad, M., Khan, M.S. 2012. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950.
- Akintokun A.K., Akande G.A., Akintokun, P.O., Popoola, T.O.S. and Babalola, A.O. 2007. Solubilization of insoluble phosphate by organic acid producing fungi isolated from Nigerian soil. Int. J. Soil Sci. 2:301–307
- Anderson, S., Marks, C.B., Lazarus, R., Miller, J., Stafford, K., Seymour, J., and Estell, D. 1985. Production of 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modffied erwinia herbicola. Science, 230 (47): 144-149.
- Anthony, C. 1988. Quinoproteins and energy transduction. Bacterial Energy Transduction, 293-316. Academic Press; New York.
- Armarger, N. 2002. Genetically modified bacteria in agriculture. Biochimie 84:1061–1072.
- Arwidsson, Z. Johansson, E., Kronhelm, T.V., Allard, B. Van Hees, P. 2010. Remediation of metal contaminated soil by organic metabolites from fungi I—production of organic acids. Water Air Soil Pollut 205:215–226.
- Bashan, Y. Kamnev, A.A., de-Bashan, L.E. .2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479.
- Beacham, I.R., and Garrett, S. 1980. Isolation of Escherichia colimutants (cpdB) deficient in periplasmic 2 –cyclic phosphodiesterase and genetic mapping of the cpdB locus. J Gen Microbiol; 119:31–34.
- Bianco, C. and Defez, R. 2010. Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632
- Brady, N.C., and Weil, R.R. 2002.The nature and properties of soils, 13th edn. Prentice Hall of India,New Delhi, 960
- Burns, D.M., and Beacham, I.R. 1986. Nucleotide sequence and transcriptional analysis of the Escherichia coli ushAgene, encoding periplasmic UDP-sugar hydrolase (5’-nucleotidase): regulation of the ushA gene, and thesignal sequence of its encoded protein product. Nucleic Acids Res;14:4325–42.
- Cao, X., Song, C., Zhou, Y. 2010. Limitations of using extracellular alkaline phosphatase activities as a general indicator for describing P deficiency of phytoplankton in Chinese shallow lakes. Journal of Applied Phycology, 22(1): 33-41.
- Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A. Young, C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41
- Chen,Y. P., Rekha, P. D., Arun,A. B., Shen,F. T., Lai,W. A., and Young, C. C. 2006.Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities, Applied Soil Ecology, 34 )1:(33–41.
- Dick, R.P., Tabatabai, M.A. 1986. Hydrolysis of polyphosphate in soils. Soil Sci 142:132–140
- Dodor, D. E. and Tabatabai, M. A. 2003. Effect of cropping systems on phosphatases in soils, Journal of Plant Nutrition and Soil Science, 166)1( : 7–13.
- Dumora, C., Lacoste, A. M. and Cassaigne, A. 1989. Phosphonoacetaldehyde hydrolase from Pseudornnnns aeruginnsci ; purification, properties, and comparison with Baci1lir.s cereus enzyme, Biochim. Biophys. Acta 997, 193-198.
- Eida, A. A., Hirt, H., and Saad, M. M., (2017). Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria. In Rhizotrophs: Plant Growth Promotion to Bioremediation (pp. 125-143). Springer, Singapore.
- Fraga, R., Rodriguez, H., Gonzalez, T. 2001. Transfer of the gene encoding the NapA acid phosphatase from Morganella morganii to a Burkholderia cepacia strain. Acta Biotechnol 21:359–369.
- George T.S, Gregory P.J, Hocking P.J, Richardson A. E. 2008. Variation in root-associated phosphatase activities in wheat contributes to the utilisation of organic P substrates in vitro, but does not effectively predict P-nutrition in different soils. Environ Exp Bot 64:239–249
- Gharabaghi, M., Irannajad, M. and Noaparast, M. A. 2010. Review of the beneficiation of calcareous phosphate ores using organic acid leaching, Hydrometallurgy, 103( 1–4) : 96–107.
- Goldstein, A.H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol Agric Hortic 12:185–193
- Goldstein, A.H., Liu, S.T. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72–74.
- Gyaneshwar, P., Naresh, K.G., Parekh, L.J. 1998. Effect of buffering on the phosphate solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673.
- Haefner, S., Knietsch, A., Scholten, .2005. Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68, 588–597
- Illmer, P. and Schinner, F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395.
- Illmer, P. and Schinner, F. 1995 Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395.
- Jain, R., Saxena, J. and Sharma, V. 2012. Effect of phosphate solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata RMG 492) growth. Folia Microbiol 57:533–541.
- Khan, A., Jilani, V., Akhtari, M. S., Naqvi,S. M. S. and Rasheed, M. 2009. “Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production,” Journal of Agricultural and Biological Science, 1: 48–58.
- Khan, M. S. Zaidi,A. and Wani, P. A. 2007. Role of phosphatesolubilizing microorganisms in sustainable agriculture a review, Agronomy for Sustainable Development, 27( 1): 29–43.
- Khan, M.S., Ahmad, E., Zaidi, A., Oves, M. 2013. Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 237–265.
- Khan, M. S., Zaidi, A., & Ahmad, E. 2014. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In Phosphate solubilizing microorganisms Springer, Cham. 31-62.
- Kucey, R. M. N. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63 (4): 671-678.
- Kumar,A., and Patel., H. 2018.Role of microbes in phosphorus availability and acquisition by plants, nternational Journal of Current Microbiology and Applied Sciences, 7) 5(: 1344–1347.
- Linda, R.,and Babyson, R. S. Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soils. International Journal of Innovative Science, Engineering & Technology, 1(7): 317-324.
- Mahidi,S. S. Hassan, G. I., Hussain,A. and Faisul, U. R., Phosphorus availability issue-its fixation and role of phosphate solubilizing bacteria in phosphate solubilization-case study, Research Journal of Agriculture Science, 2: 174–179.
- Maliha, R., Samina, K., Najma, A., Sadia, A., Farooq, L. 2004. Organic acid production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196
- Mao, L., Lu, Q., Mo, W., Xin, X., Chen, X., He, Z. 2017. Phosphorus availability and release pattern from activated dolomite phosphate rock in Central Florida. J. Agric. Food Chem. 65: 4589–4596.
- Meena, M. D., & Biswas, D. R. 2015. Effect of rock phosphate enriched compost and chemical fertilizers on microbial biomass phosphorus and phosphorus fractions. African Journal of Microbiology Research, 9(23), 1519-1526.
- Mendes, G.O., Dias, C.S., Silva, I.R., Ju´nior, J.I.R., Pereira, O.L., Costa, M.D. 2013. Fungal rock phosphate solubilization using sugarcane bagasse. World J Microbiol Biotechnol 29:43–50.
- Mendes, G.O., Dias, C.S., Silva, I.R., Ju´nior, J.I.R., Pereira, O.L., Costa, M.D. 2013. Fungal rock phosphate solubilization using sugarcane bagasse. World J Microbiol Biotechnol 29:43–50.
- Pande, A., Pandey, P., Mehra, S., Singh, M., & Kaushik, S. 2017. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. Journal of Genetic Engineering and Biotechnology, 15(2), 379-391
- Pradhanm, N. and Sukla,L. B. 2012.Solubilization of inorganic phosphate by fungi isolated from agriculture soil, African Journal of Biotechnology, 5: 850–854.
- Reyes, I., Baziramakenga, R., Bernier, L., Antoun, H. 2001.Solubilization of phosphate rocks and minerals by a wild-type strain and two UV induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747
- Ribaudo C, Zaballa J.I, and Golluscio R. 2020. Effect of the phosphorus-solubilizing bacterium Enterobacter Ludwigii on barley growth promotion. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS). Jan 26;63(1):144-57.
- Richardson, A.E. 1994. Soil microorganisms and phosphorus availability. In: Pankhurst C.E., Doube ,B.M., Gupta, V.V.S.R., Grace, P.R. (eds) Management of the soil biota in sustainable farming CSIRO Publishing, Melbourne, pp 50–62
- Rodrıguez, H. and Fraga,R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion, iotechnology Advances, 17: 319–339.
- Rossolini, G.M., Shippa, S., Riccio, M.L., Berlutti, F., Macaskie, L.E., Thaller, M.C. 1998. Bacterial nonspecific acid phos- phatases: physiology, evolution, and use as tools in microbial biotechnology. Cell Mol Life Sci;54:833–50.
- Satyaprakash, M., Nikitha, T. Reddi, E. U. B. Sadhana, B. and Vani, S. S. 2017. A review on phosphorous and phosphate solubilising bacteria and their role in plant nutrition,” International Journal of Current Microbiology and Applied Scences, 6: 2133–2144.
- Scervino, J.M., Mesa, M.P., Mo´nica, I.D., Recchi, M., Moreno, N.S., and Godeas, A. 2010a. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soil 46:755–763.
- Scervino, J.M., Mesa, M.P., Mo´nica, I.D., Recchi, M., Moreno, N.S., Godeas, A. 2010b. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755763
- Selvi, K. B., Paul, J. J. A., Vijaya, V. and Saraswathi, K. 2017. Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques, Biochemistry and Molecular Biology Journal, 3: 1-12.
- Shahid, M., Hameed, S., Imran, A., Ali, S., and Elsas, J.D. 2012. Root colonization and growth promotion of sunflower (Helianthus annuus) by phosphate solubilizing Enterobacter sp. Fs-11. World J Microbiol Biotechnol 28:2749–2758.
- Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. and Gobi, T.A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2 (1): 58-67.
- Shenoy, V.V., Kalagudi, G.M. 2005. Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv 23:501–513.
- Shin, W., Ryu, J., Kim, Y., Yang, J., Madhaiyan, M., Sa, T. 2006. Phosphate solubilization and growth promotion of maize [Zea mays L.] by the rhizosphere soil fungus Penicillium oxalicum. In: 18th World congress of soil science. 9–15 July, Philadelphia, PA
- Tabatabai, M.A. 1982. Soil enzymes. In: Page A.L, Miller, R.H., Keeney, D.R. (eds) Methods of soil Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, WI, pp 903–948.
- Tarafdar, J.C., Marschner, H. 1994. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395.
- Tate, K. R .1984. The biological transformation of P in soil. Plant Soil 76:245–256
- Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A., Bashan, Y. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468.
- Vyas, P., Gulati, A. 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174
- Walpola, B. C. and Yoon,M. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review, African Journal of Microbiology. 6 (37): 6600-6605.
- Wang, X., Wang, Y., Tian, J., Lim, B.L., Yan, X., and Liao, H. 2009. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151:233–240.
- Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y. and Wei, Z. 2018. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphatesolubilizing bacteria inoculation. Bioresour. Technol. 247: 190-
- Xu, J. C., Huang, L. M., Chen, C., Wang, J., and Long, X. X. (2019). Effective lead immobilization by phosphate rock solubilization mediated by phosphate rock amendment and phosphate solubilizing bacteria. Chemosphere, 237, 124540.
- Yadav, B.K., and Verma, A. 2012. Phosphate solubilization and mobilization in soil through soil microorganisms under arid ecosystems, the functioning of ecosystems. In: Ali, M. (ed) In Tech. ISBN:978-953-51-0573-2, Available from http://www.intechopen.com/books/the-functioning-of ecosystems/phosphate-solubilization-and-mobilization-in-soil-through-microorganismsunder-arid-ecosystems.
- Yi, Y., Huang, W., and Ge, Y. 2008. Exo-polysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065.
- Yuan, B.C., Li, Z.Z., Liu, H, Gao, M., Zhang, Y.Y. 2007. Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35:319–328.
- Zafar,Z. I. 1993. Beneficiation of low grade carbonate-rich phosphate rocks using dilute acetic acid solution, Fertilizer Research, 34) 2( : 173–180.
|