- حق وردی، امیر.، قهرمان، بیژن.، جلینی، محمد.، خشنود یزدی، علیاصغر.، عربی، زهرا. 1389. مدلسازی منحنی مشخصه رطوبتی برخی خاکهای ایران با استفاده از توابع انتقالی شبه پارامتریک شبکه عصبی. فصلنامه علمی پژوهشی مهندسی آبیاری و آب. شماره 1. صفحات 82-69.
- Baker, L., and Ellison, D. 2008. Optimization of pedotransfer functions using an artificial neural network ensemble method. Geoderma. 144: 212-224.
- Bouma, J. (1989). Using soil survey data for quantitative land evaluation. In B. A. Stewart (Ed.), Advances in soil science (Vol. 9, pp. 177–213).
- Brooks R.H., and Corey A.T. 1964. Hydraulic properties of porous media. Hydrological Paper no. 3. Colorado State University, Fort Collins.
- Carney, J. G. and Cuningham, P. 1999. The NeuralBAG algorithm: Optimizing generalization performance in bagged neural networks. 7th European Symposium on Artificial Neural Network. Bruges (Belgium).
- Castellini, M., and Iovino, M. 2019. Pedotransfer functions for estimating soil water retention curve of Sicilian soils. Archives of Agronomy and Soil Science. V.65:1401-1416.
- Cosby, B.J., Hornberger, G.M., Clapp, R.B., and Ginn, T.R. 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20:682–690.
- Dettmann U., Bechtold M., Frahm E., and Tiemeyer B., 2014. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions. J. Hydrol., 515: 103-115.
- Durbin, J. and Watson, G. S. 1951. Testing for Serial Correlation in Least Squares Regression, II. Biometrika. 38 (1–2): 159–179.
- Haghverdi, A.; Cornelis, W. M., Ghahraman, B. A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. J. Hydrol. 442–443, 46–54.
- Hill, R.L. 1990. Long-term conventional and no-tillage effects on selected soil physical properties. Soil Sci. Soc. Am. J, 54: 161-166.
- Jana R. B., Mohanty, B. P. 2011. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation. J Hydrol. 399: 201–211.
- Kong, J., Shen, C., Luo, Z., Hua, G., & Zhao, H. (2016). Improvement of the hillslope-storage Boussinesq model by considering lateral flow in the unsaturated zone. Water Res. 52(4): 2965-2984.
- Kosugi, K. 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res. 32(121): 2697-2703.
- Luo, Z., Kong, J., Shen, C., Lu, C., Hua, G., Zhao, Z., Zhao, H., Li, L. (2019). Evaluation and application of the modified van Genuchten function for unsaturated porous media, . J. Hydrol. 571 (2): 279–287.
- McCuen, R.H., Rawls, W. J., and Brakensiek, D. L. 1981. Statistical analysis of the Brooks-Corey and the Green-Ampt parameters across soil textures. Water Resour. Res. 17:1005-1013.
- Minasny, B., McBratney, A.B., and Bristow, K.L. 1999. Comparison of different approaches to the development of pedotransfer functions for water retention curves. Geoderma. 93: 225-253.
- Motovilov, Y.G., Gottschalk, L., Engeland, K. dan Rodhe, A. 1999. Validation of a Distributed Hydrological Model Against Spatial Observations. Elsevier Agricultural and Forest Meteorology. 98: 257-277.
- Mualem, Y. 1976. New model for predicting hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513–522.
- Nemes, A., Rawls, W. J., Pachepsky, Y. A. 2006. Use of the Nonparametric Nearest Neighbor Approach to Estimate Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 70:327–336.
- Patil, N. G., Rajput, G. S., Nema, R. K., Singh, R. B. 2010. Predicting hydraulic properties of seasonally impounded soils. J Agr Sci Cambridge. 148: 159–170.
- Patil, N. G., Chaturvedi, A. 2012. Pedotransfer functions based on nearest neighbor and neural networks approach to estimate available water capacity of shrink-swell soils. Indian J AgrSci. 82: 35–38.
- Pucket, W. E., Dane, J.H. and Hajek, B. F. 1985. Physical and mineralogical data to determine soil hydraulic properties. Soil Sci. Soc. Am. J. 49:831–836.
- Richards, L. A., 1931. Capillary conduction of liquids through porous media, Physics, I, 318-333.
- Ritter, A. and Muñoz-Carpena, R. 2013. Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness of fit assessments. J. Hydrol. 480 (1): 33–45.
- Schaap, M. G., Leij, F. J. 2000. Improved Prediction of Unsaturated Hydraulic Conductivity with the Mualem-van Genuchten Model. Soil Sci. Soc. Am. J. 64:843–851.
- Schaap, M. G., Leij, F. J., and van Genuchten, M.Th. 2001. Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions. J. Hydrol. 251(3-4): 163-176.
- Schaap, M. G., Leij, F. J., and van Genuchten, M.Th. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am. J. 62:847–855.
- Schaap, M.G., Leij, F.J., and Van genuchten, M.Th. 1999. A bootstrap neural network approach to predict soil hydraulic parameters, P 1237-1250.
- Schaap, M.G., Van Genuchten, M.T. 2005. A modified mualem-van genuchten formulation for improved description of the hydraulic conductivity near saturation. Vadose Zone Journal. Vol 5:27-34
- Simunek, J., Van Genuchten, M. Th., and Sejna, M. 2006. The Hydrus Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably – Saturated Media. Technical Manual.
- Singh, A., Haghverdi, A., Öztürk, H. S., Durner,W. 2020. Developing Pseudo Continuous Pedotransfer Functions for International Soils Measured with the Evaporation Method and the HYPROP System: I. The Soil Water Retention Curve. Water Journal. 12:1-17.
- Tamari, S., Bruckler, L., Halbertsma, J., and Chadoeuf, J. 1993. A simple method for determining soil hydraulic properties in the laboratory. Soil Sci. Soc. Am. J. 57: 642-651.
- Tuller, M. and Dani, Or. 2003. Hydraulic functions for swelling soils: pore scale considerations. J Hydrol. 272: 50–71.
- Twarakavi, N. K. C., Saito, H., Simunek, J., van Genuchten M.Th. 2008. A New Approach to Estimate Soil Hydraulic Parameters Using Only Soil Water Retention Data. Soil Sci. Soc. Am. J. 72: 471–479.
- Van Genuchten M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898.
- Van Genuchten, M. Th., Lesch, S. M. and Yates, S. R. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Version 1.0. U.S. Salinity Lab., Riverside, CA.
- Vereecken, H., Maes, J., Feyen, J., Darius, P. 1989. Estimating the soil moisture retention characteristic from texture, bulk density and carbon content. Soil Sci. 148: 389–403.
- Vrugt, J.A., Weerts, A.H. and Bouten, W. 2001. Information content of data for identifying soil hydraulic parameters from outflow experiments. Soil Sci. Soc. Am. J. 65: 19-27.
- Wösten, J.H.M., and van Genuchten, M. Th. 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci. Soc. Am. J. 52:1762–1770.
- Wösten, J.H.M., Lilly, A., Nemes, A. and Le Bas, C. 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185.
- Wösten, J.H.M., Pachepsky Y. A. and Rawls W. J. 2001. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol. 251: 123–150.
- Yates, S.R., van Genuchten, M. , Warrick, A.W. and Leij, F.J. 1992. Analysis of measured, predicted, and estimated hydraulic conductivity using the RETC computer program. Soil Sci. Soc. Am. J. 56:347–354.
- Zhang, Z., Wang, W., Yeh, T. J., Chen, L., Wang, Z., Duan, L., A. K., Gong, C., 2016. Finite analytic method based on mixed-form Richards’ equation for simulating water flow in vadose zone. J Hydrol. 537: 146 – 156.
|