- اصغری، ش.، و حاتم وند، م.، و حسنپورکاشانی، م. (1398). اشتقاق توابع انتقالی برای برآورد هدایت هیدرولیکی اشباع خاک در شمال غرب دریاچه ارومیه. پژوهش های فرسایش محیطی, 9(3 (پیاپی 35) ), 102-118.
- حسن زاده, ی., معظم نیا, م., صادق فام, س. و ع، ندیری. 1398. تخمین هدایت هیدرولیکی و ارزیابی عدم قطعیت بین مدلها و دادههای ورودی توسط متوسطگیری بیزین از مدلهای هوش مصنوعی. نشریه مهندسی عمران امیرکبیر. 52(9):1-13.
- رضایی ارشد، ر . صیاد ،غ. مظلوم ،م. شرفا،م. و م. جعفرنژادی. 1391. مقایسة روشهای شبکه عصبی مصنوعی و رگرسیونی برای پیشبینی هدایت آبی اشباع خاکهای استان خوزستان، مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک،6(60): 107-117.
- Agyare, W. A., Park, S. J. and P. L. G. 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone Journal, 6(2): 423–431.
- Akbarzadeh, A., Mehrjardi, R.T., Rouhipour, H., Gorji, M. and H.G. 2009. Estimating of soil erosion covered with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal of Applied Science Research, 5 (5): 505–514.
- Aqil, M., Kita, I., Yano, A. and S. 2007. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff, Journal of Hydrology. 337 (1-2): 22–34.
- Campbell, G.S. and S. Shozawa. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data. Proceedings of International Workshop on Indirect Methods. University 0f California, 30: 211–223.
- Cosby, B. J., Hornberger, G. M., Clapp, R. B. and T. R. Ginn. 1984. A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20 (6): 682-690.
- Gokceoglu, C. 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66: 39–51.
- Dane, J.H. and W. Puckett. 1994. Field soil hydraulic properties based on physical and mineralogical information. p. 389-403. In: M.Th. van Genuchten et al. (eds) Proceedings of the International workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. Univ. of California, Riverside, CA.
- Elrick, D.E., Reynolds, W.D., Tan, K.A. 1989. Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground water monitoring. 9:184-193.
- Ferrer-Julià, M., Estrela Monreal, T., Sánchez Del Corral Jiménez, A. and E. García Meléndez. 2004. Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma, 123: 275-277.
- Finol, J., Guo, Y.K. and X.D. Jing. 2001. A rule based fuzzy model for the prediction of petro physical rock parameters, Journal of Petroleum Science and Engineering, 29: 97–113.
- Jacovides, C.P. 1997. Reply to comment on Statistical procedures for the evaluation of evapotranspiration models. Agricultural Water Management, 3: 95-97.
- Jang, J. S. R. 1993. ANFIS: Adaptive Network Based Fuzzy Inference System, IEEE transactions on Systems, Man and Cybernetics, 23 (3): 665–683.
- Jamieson, P.D., Porter, J.R. and D.R. Wilson. 1991. A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Res. 27: 337–350.
- Jang, J. S. R. and C. T. 1997. Neuro-Fuzzy Modeling and Control, Proceedings of the IEEE, 83 (3): 378-406.
- hassanzadeh, y., Moazamnia, M., Sadeghfam, S., Nadiri, A. A. 2020. Hydraulic conductivity and uncertainty analysis of between-models and input data by using Bayesian model averaging of artificial intelligence model. Amirkabir Journal of Civil Engineering. 52(9):2171-2190.
- Karakus, M. and B. Tutmez. 2006. Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity, Rock Mech. Rock Eng. 39 (1): 45–57.
- Karatalopoulos, S. V. 2000. Understanding Neural Networks and Fuzzy Logic- Basic Concepts and Applications; Prentice Hall, New-Delhi, India.
- Luk, K. C., Ball, J. E. and A. 2000. a study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting, Journal of Hydrology, 227: (1-4): 56–65.
- Marshal, T. J. 1958. A relationship between permeability and size distribution of pores. Soil Science, 9:1-8.
- Manyam, C., Morgan, C. L., Heilman, J. L., Fatondji, D., Gerard, B. and W.A. 2007. Modeling hydraulic properties of sandy soils of Niger using pedotransfer functions. Geoderma, 141: 407 – 415.
- Nadiri, A.A., Yousefzadeh, S. 2017. A Comparison of the Performance of Artificial Neural Network, Fuzzy Logic and Adaptive Neuro-Fuzzy Inference Systems Models in the Estimation of Aquifer Hydraulic Conductivity. A Case Study: Maraghe-Bonab Aquifer, Hydrogeomorphology, 3(10): 21-40.
- Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Yaser Torabi, M. and F. Alimardani. 2012. Application of ANFIS to predict crop yield based on different energy inputs. Measurement, 45: 1406-1413.
- Puckett, W. E., Dane, J. H. and B. F. 1985. Physical and mineralogical data to determine Soil hydraulic properties. Soil Science Society of America Journal, 49: 831-836.
- Rawls, W. J. 2004. Pedotransfer functions for the United States. Developments in Soil Science, 30: 437-447.
- Reynolds, W.D., Elrick, D.E., Clothier, B.E. 1985. The constant head well permeameter Effect on unsaturated flow. Soil Science. 139(2): 172-18.
- Reynolds, W.D., Elrick D.E. 1985. In situ measurement of field saturated hydraulic conductivity sorpitivity a parameter using Guelph permeameter. Soil science. 140 (4): 292-302.
- Rahimi-Ajdadi, F. and Y. Abbaspour-Gilandeh. 2011. Artificial neural network and stepwise multiple range regression methods for prediction of tractor fuel consumption. Measurement, 44 (10): 2104-2111.
- Sajikumar, N. and B.S. Thandaveswara. 1999. A nonlinear rainfall–runoff model using artificial neural networks, Journal of Hydrology, 216: 32-55.
- Schaap, M. G. and F. J. Leij. 1998. Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research, 47: 37-42.
- Salazar, O., Wesstrom, I. and A. 2008. Evaluation of Drain mod using saturated hydraulic conductivity estimated by a pedotransfer function model. Journal of Agricultural Water Management, 95: 1135 – 1143.
- Wagner, B., Tarnawski, V. R., Hennings, V., Müller, U., Wessolek, G. and R. Plagge. 2001. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma.102: 275-297.
- Van Genuchten, M.T. 1980. A closed form equation for predicting the hydraulic conductivity of soils. Soil Sci. Soc. J, 44: 892-898.
- Vereecken, H., Maes, J. and J. Feyen, 1990. Estimating unsaturated hydraulic conductivity from easily measured soil property. Soil Science, 149: 1-12.
- Yilmaz, I. and O. Kaynar, 2011. Multiple regressions, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications. 38(5): 5958–5966.
|