- Frizzo L, Soto L, Zbrun M, Bertozzi E, Sequeira G, Armesto RR, et al. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim Feed Sci Technol. 2010;157(3-4):159-67.
- Novak K, Davis E, Wehnes C, Shields D, Coalson J, Smith A, et al. Effect of supplementation with an electrolyte containing a Bacillus-based direct-fed microbial on immune development in dairy calves. Res Vet Sci. 2012;92(3):427-34.
- Sun P, Wang J, Zhang H. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J Dairy Sci. 2010;93(12):5851-5.
- Timmerman HM, Mulder L, Everts H, Van Espen D, Van Der Wal E, Klaassen G, et al. Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci. 2005;88(6):2154-65.
- Leite AMdO, Miguel MAL, Peixoto RS, Rosado AS, Silva JT, Paschoalin VMF. Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Braz J Microbiol. 2013;44:341-9.
- Ataþoðlu C, Akbað H, Tölü C, Das G, Savas T, Yurtman I. Effects of kefir as a probiotic source on the performance of goat kids. S Afr J Anim Sci. 2010;40(4).
- Toghyani M, kazem Mosavi S, Modaresi M, Landy N. Evaluation of kefir as a potential probiotic on growth performance, serum biochemistry and immune responses in broiler chicks. Anim Nutr. 2015;1(4):305-9.
- Ganai A, Sharma T, Dhuria R. Effect of yeast (Saccharomyces cerevisiae) supplementation on ruminal digestion of bajra (Pennisetum glaucum) straw and bajra straw-based complete feed in vitro. Anim Nutr Feed Technol. 2015;15(1):145-53.
- Menke K, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci. 1979;93(1):217-22.
- Tilley J, Terry dR. A two‐stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963;18(2):104-11.
- Ørskov E-R, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. 1979;92(2):499-503.
- Getachew G, Makkar H, Becker K. Effect of polyethylene glycol on in vitro degradability ofnitrogen and microbial protein synthesis fromtannin-rich browse and herbaceous legumes. Br J Nutr. 2000;84(1):73-83.
- Anele U, Südekum K-H, Hummel J, Arigbede O, Oni A, Olanite J, et al. Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Anim Feed Sci Technol. 2011;163(2-4):161-9.
- Van Soest Pv, Robertson JB, Lewis B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J dairy Sci. 1991;74(10):3583-97.
- Blümmel M, Makkar H, Becker K. In vitro gas production: a technique revisited. J Anim Physiol Anim Nutr. 1997;77(1‐5):24-34.
- Spss I. Statistics for windows, version 24. 0 [computer software]. Armonk, NY: IBM Corp. 2016.
- Polyorach S, Wanapat M, Cherdthong A. Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australas J Anim Sci. 2014;27(1):36.
- Kang S, Wanapat M, Phesatcha K, Norrapoke T, Foiklang S, Ampapon T, et al. Using krabok (Irvingia malayana) seed oil and Flemingia macrophylla leaf meal as a rumen enhancer in an in vitro gas production system. Anim Prod Sci. 2016;57(2):327-33.
- Tang S, Tayo G, Tan Z, Sun Z, Shen L, Zhou C, et al. Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws. J Anim Sci. 2008;86(5):1164-72.
- Wang Z, He Z, Beauchemin KA, Tang S, Zhou C, Han X, et al. Evaluation of different yeast species for improving in vitro fermentation of cereal straws. Asian-Australas J Anim Sci. 2016;29(2):230.
- Hristov A, Oh J, Firkins J, Dijkstra J, Kebreab E, Waghorn G, et al. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci. 2013;91(11):5045-69.
- Phesatcha K, Phesatcha B, Wanapat M, Cherdthong A. Roughage to Concentrate Ratio and Saccharomyces cerevisiae Inclusion Could Modulate Feed Digestion and In Vitro Ruminal Fermentation. Vet Sci. 2020;7(4):151.
- dos Santos Monnerat JPI, Paulino PVR, Detmann E, Valadares Filho SC, Valadares RDF, Duarte MS. Effects of Saccharomyces cerevisiae and monensin on digestion, ruminal parameters, and balance of nitrogenous compounds of beef cattle fed diets with different starch concentrations. Trop Anim Health Prod. 2013;45(5):1251-7.
- Cagle CM, Fonseca MA, Callaway TR, Runyan CA, Cravey MD, Tedeschi LO. Evaluation of the effects of live yeast on rumen parameters and in situ digestibility of dry matter and neutral detergent fiber in beef cattle fed growing and finishing diets. Appl Anim Sci. 2020;36(1):36-47.
- Campanile G, Zicarelli F, Vecchio D, Pacelli C, Neglia G, Balestrieri A, et al. Effects of Saccharomyces cerevisiae on in vivo organic matter digestibility and milk yield in buffalo cows. Livest Sci. 2008;114(2-3):358-61.
- Chaucheyras-Durand F, Walker N, Bach A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim Feed Sci Technol. 2008;145(1-4):5-26.
- Patra AK. The use of live yeast products as microbial feed additives in ruminant nutrition. Asian J Anim Vet Adv. 2012;7(5):366-75.
- Chung Y-H, Walker N, McGinn S, Beauchemin K. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows. J Dairy Sci. 2011;94(5):2431-9.
- Prado MR, Blandón LM, Vandenberghe LP, Rodrigues C, Castro GR, Thomaz-Soccol V, et al. Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol. 2015;6:1177.
- Lopitz-Otsoa F, Rementeria A, Elguezabal N, Garaizar J. Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev Iberoam Micol. 2006;23(2):67-74.
- Golowczyc MA, Silva J, Teixeira P, De Antoni GL, Abraham AG. Cellular injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties. Int J Food Microbiol. 2011;144(3):556-60.
- Fouladgar S, Shahraki AF, Ghalamkari G, Khani M, Ahmadi F, Erickson PS. Performance of Holstein calves fed whole milk with or without kefir. J Dairy Sci. 2016;99(10):8081-9.
- Plessas S, Trantallidi M, Bekatorou A, Kanellaki M, Nigam P, Koutinas AA. Immobilization of kefir and Lactobacillus casei on brewery spent grains for use in sourdough wheat bread making. Food Chem. 2007;105(1):187-94.
- Lee M-Y, Ahn K-S, Kwon O-K, Kim M-J, Kim M-K, Lee I-Y, et al. Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. Immunobiology. 2007;212(8):647-54.
- Carasi P, Racedo SM, Jacquot C, Romanin DE, Serradell M, Urdaci M. Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J Immunol Res. 2015;2015.
- Sutton J. Digestion and absorption of energy substrates in the lactating cow. Journal of Dairy Science. 1985;68(12):3376-93.
|