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Abstract

Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) is an important beneficial predator in
agriculture, which is easily reared in laboratory. It is widely used in augmentative biological control
programs. Research on sublethal effects, aims to reveal the negative and non-lethal impacts of
insecticides on pests and provide practical information for forming effective pest control strategies.
The lethal and sublethal effects of tebufenozide, clothianidin, and flupyradifurone on the common
green lacewing, C. carnea were investigated in laboratory conditions at 25 + 2°C, 60 + 5% RH and a
photoperiod of 16:8 h. (L:D). The results indicated the oviposition period in insects treated with
flupyradifurone (26.62 days) was significantly different from the oviposition period in insects treated
with clothianidin (21.90 days) and tebufenozide (21.62 days). Total fecundity in flupyradifurone
treatment was significantly higher than the total fecundity in other treatments. The life table experiment
of current study showed the values of r in control and the populations treated with LCso of clothianidin,
tebufenozide and flupyradifurone were 0.15, 0.17, 0.14, 0.15 day!, respectively. The finite rate of
increase (1) was affected with different treatments; and the values varied from 1.19 to 1.16 day™* for C.
carnea adults treated with clothianidin and tebufenozide, respectively. The highest survival rate of C.
carnea was observed in control (58 days). Based on the results, it seems flupyradifurone may have less
harmful effects on total lifespan, fecundity rate and bio-characteristics of green lacewing population

than clothianidin and tebufenozide.
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Introduction

The green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), is
considered as an important and widely distributed natural predator of insect herbivores in
many different crop and non-crop habitats (Geetha & Swamiappan, 1998; McEwen et al.,
2007; Meissle et al., 2012; Romeis et al., 2014). The lacewing is regarded as a main generalist
biological control agent by high adaptability to various systems, which is used primarily
through additive periodic releases of larvae for control of several species (Azema &
Mirabzadae, 2004; Turquet et al., 2008). Application of chemical control is the primary and
effective strategy for pest control in IPM (integrated pest management) programs due to its
rapidity, cost-effectiveness and ease of use (Zhao, 2000). By definition, IPM is a pest
management strategy that uses a combination of methods to manage pests without solely on
chemical pesticides (Kovach et al., 1992). Natural enemies and pesticides in combination
with each other can be effectively integrated with adequate knowledge of the pesticides to be
used and their effects on populations of natural enemies (Bartlett, 1964; Newsom et al., 1976;
Jepson, 1989; Croft, 1990, Greathead, 1995; Biondi et al., 2012; Roubus et al., 2014).

Various studies have focused on assessing toxicity of different pesticides on beneficial
organisms (Nasreen et al., 2005; Preetha et al., 2009; Golmohammadi et al., 2009, 2014;
Hussain et al., 2012; Garzon et al., 2015). Biological control has been known as one of the
most valuable pest control methods (Doue, 2009). Therefore, knowledge of the effects of
pesticides which are compatible with biological control agents is necessary for successful
implementation of integrated pest management (IPM) programs (Sa"enz-de-Cabezo'n et al.,
2006; Hamedi et al., 2010). Studies that only evaluate the lethal effects may underestimate
the negative effects of pesticides on natural enemies (Galvan et al., 2005).

One of the generally applied methods to evaluate the side effects of pesticides on natural
enemies is to study their sublethal effects recommended by the International Organization of
Biological Control (IOBC). This approach primarily screens the pesticides in the laboratory,
semi-field and field tests (Dohmen, 1998; Hassan, 1998). The studies conducted on sublethal

effects revealed that the negative and non-lethal impacts of insecticides on pests could
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provide practical information for forming effective pest control strategies (Wang et al.,
2009). The life-table technique has been used as an appropriate method for assessing
population dynamics in the studies related to several target and non-target insects (Biondi et
al., 2013; Cira et al., 2017; Nawaz et al., 2017).

Life tables and demographic toxicology which evaluate the total effects of a toxicant in
pest management, merge data on all life history parameters, including survival, stage
differentiation, and reproduction (Stark et al., 2004; Huang et al., 2017). flupyradifurone,
tebufenozide and clothianidin which were used in this research, affect the central nervous
system, act as molting hormone and affect postsynaptic receptors, respectively (Matsumura,
2012). Previously, no study has addressed the sublethal effects of flupyradifurone,
tebufenozide and clothianidin on C. carnea. Thus, the present study aimed to address the
potential of sublethal concentrations of these insecticides on pre-imaginal developmental
period, adult longevity, fecundity and demographic parameters of C. carnea, using the age-
stage, two-sex life table to predict their potential in combination with one of the effective

natural enemies.

Materials and Methods

Insect Rearing

The Mediterranean flour moth, Ephestia kuehniella Zell (Lepidoptera: Pyralidae) was
collected from of the Iranian Research Institute of Plant protection (IRIPP). To rear E.
kuehniella, plastic containers with a net cloth (70 cm in diameter x 25 cm high) were used.
In each glass petri dish, a layer of mixture of wheat flour, wheat bran plus bakery yeast (2.5:
0.5: 40; kg: kg: g) was added, then 1g of E. kuehniella eggs was spread uniformly on it. After
oviposition, the eggs were collected and refrigerated to feed the green lacewings. The initial
population of green lacewing, C. carnea adults was obtained from of the Agriculture and
Natural Resources Research Center of Khorasan Razavi Province. Adult insects were kept
in plastic containers with 16 cm diameter and 24 cm height, covered with a piece of cloth
screen and fed on artificial diet consisted of 4 g brewer’s yeast, 7 g honey and 5 ml water.
The larvae of green lacewing, fed on eggs of E. kuehniella. The adults of green lacewing
were fed with artificial diet which consisted of yeast, honey and distilled water (4:7:5 g/g/ml.
After formation of pupae of C. carnea, they were collected and transferred to another
container. Rearing containers was maintained in growth chamber with the temperature and
humidity of 25+2°C, 60+5 % RH, and a photoperiod of 16: 8 (L: D) h.
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Insecticides

In order to conduct the experiments, flupyradifurone (Sivanto® 48 SC), tebufenozide
(Mimic® 20 SC), and clothianidin (20 WG) were applied in these experiments (Table 1).
Concentration-Response Bioassays

After the initial experiments, the range of concentrations resulting in 10-90% mortality
were 30- 1800 mg ai/l for tebufenozide, 20 — 50 mg ai/l for flupyradifurone and 10- 80 mg
ai/l for clothianidin. Distilled water was used in controls. Abbott's formula was used to
estimate the corrected mortality (Abbott, 1925). After preparing of insecticide solutions, 2
ml from each concentration was sprayed at a pressure of 0.5 bar using Potter tower (68.1
pl/cm?) into Petri-dishes (10 cm diameter). The Petri dishes were let to dry for 30 minutes.
Then 10 C. carnea (24-h old-male and female) adults (fed on E. kuehniella eggs and artificial
diet consisted of yeast, honey and distilled water (4:7:5 g/g/ml was transferred into each Petri-
dish. Mortality was assessed 48 h, after treatment.
Effect of sublethal concentrations on biological parameters of C. carnea

In order to evaluate the sublethal effects of flupyradifurone, tebufenozide and
clothianidin, a fertility life table was constructed using an insect cohort with 100 pairs of
same-aged adult green lacewings (male and female), and the fate of the cohort was pursued
until the last female died. Adults from the initial cohort were treated with LC3p of each
insecticide (table 1). Forty eight hours after treatment, the surviving adults were transferred
to plastic Petri dishes 60 mm in diameter, and kept in pairs of male and female. The eggs
were collected and counted daily. After oviposition of adults, the petri-dishes were replaced
daily, and this trend was continued until the death of last individual. Fecundity of females
was recorded daily; also population parameters were calculated for both male and females
until the death of the last sample. All experiments were conducted at controlled conditions
of 25+2°C, 6045 % RH and a photoperiod of 16: 8 (L: D) hours. In this study there were five
replicates for each treatment.
Statistical Analysis

In order to estimate the LC values and sublethal concentrations, SPSS ver 19.0 was used.
The population growth parameters (net reproductive rate [Ro], intrinsic rate of natural
increase [r], finite rate of increase [1], and mean generation time [T]) (Fathipour & Maleknia,
2016) of green lacewing, C. carnea were analyzed according to the theory of age stage, and
two-sex life table (Chi & Liu, 1985; Chi, 1988) by using the computer program of TWO-
SEX_Ms Chart Chi (2019). Paired bootstrap test was employed for estimation of the
variances and standard errors of the population growth parameters (Efron & Tibshirani,
1993). Furthermore, the paired bootstrap (x100,000) test was applied for the statistical
differences among the means of parameters related to development, fecundity, as well
as population parameters of different treatments (Efron & Tibshirani, 1993; Huang & Chi,
2012). Excel ver. 2013 was used to draw the charts.
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Results
Bioassay of insecticides

Results of the acute toxicity testing of insecticides to estimate LCsg, on the 1% instar C.
carnea are shown in table 1. Based on LCsp values and their 95% confidence limits, it was
concluded that susceptibility to the three insecticides were different.

Table 1. Probit analysis for the concentration—mortality response of clothianidin, tebufenozide
and flupyradifurone on adult females and males of Chrysoperla carnea

- LCso (Lower-Upper)  LCso (Lower-Upper
Insecticide Category n df (95% cL ppen) (95% cL ppen) X2 P-value
clothianidin Neonicotinoids 300 3 147 384 2.78 0.42
(1.9-23.0) (30.8-46.6)
tebufenozide Carbohydrazides 300 3 (129372_75'33.7) (727%%?‘0548. 4 2.33 0.50
flupyradifurone  Butenolides 300 3 2224 3223 0.96 0.81
(162.5-260.0) (288.8-354.7) i :

* 20 individuals per replicate, five replicates per concentration, six concentrations per assay

Development time, longevity and total life span

Table 2 presents the effects of different insecticides on development time of both sexes
of C. carnea. Based on the results, difference was observed among duration of eggs, larvae,
as well as pupae in males and females treated with different insecticides, compared to the
results in control. However, as shown in Table 3, the duration of different immature stages,
adult longevity, along total life span for both sexes were significantly affected by different
concentrations. Based on the obtained results, sublethal concentration (LCazg) of clothianidin
caused a significant reduction in the longevity and total lifespan of males, compared to
control. Also treatment with clothianidin led to a significant difference in total lifespan of
females in comparison with the other treatments. The longest and the lowest total life spans
for female adults were observed in flupyradifurone and clothianidin treatments, respectively
(Table 2).

Table 2. Mean (+SE) of the female and male developmental times (days) of Chrysoperla
carnea treated with sublethal concentrations of clothianidin, tebufenozide and flupyradifurone.

Parameter CK clothianidin tebufenozide flupyradifurone
Male

Egg (days) 3.98+0.117 3.35+0.1° 4.03£0.11° 3.1+0.11°
Larvae (days) 8.55+0.32° 9.82+0.18° 8.05+0.18" 7.25+0.17¢
Pupae (days) 7.3840.22° 6.08+0.14°¢ 8.07+0.16° 7.05+0.17°
Adult longevity (days) 28.1+0.46° 20.05+0.21¢ 23.88+0.29° 30.55+0.272
Total life span (days) 48.00+0.75? 39.33+0.35° 44.02+0.37° 47.95+0.322
Female

Egg (days) 4,05%0.1° 3.05+0.1° 4.85+0.13 4.03%0.16"
Larvae (days) 8.68+0.22% 7.00+0.16°¢ 8.5+0.11° 8.03+0.15°
Pupae (days) 8.35+0.23° 7.03£0.19° 9.00+0.14* 8.03+0.18°
Adult longevity (days) 28.85+0.26" 27.98+0.33° 23.8+0.29¢ 30.9+0.28°
Total life span (days) 49.92+0.39° 45.02+0.03¢ 46.15+0.08° 50.98+0.03*

The standard errors were calculated using the bootstrap procedure with 100,000 samples. The means
followed by different letters in the same row are significantly different using paired bootstrap test at
5% significance level. CK is the check treatment (water control).
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Total effect

The results are evaluated and summarized according to the international rating scheme
suggested by the IOBC. Comparing the total effects of the pesticides (Table 3) revealed that
tebufenozide and flupyradifurone could be classified as harmless compounds, but

clothianidin was slightly harmful based on the IOBC classification.

Table 3. Total effect and hazard classes of the pesticides for C. carnea according to the
IOBC evaluation categories.

Pesticide Concentration LCso (mg/lit) Total effect (%) Classification 2
clothianidin 14.73 70.61 2
tebufenozide 397.8 15.74 1
flupyradifurone 22241 17.52 1

a: 1. harmless, and 2. slightly harmful.

Reproduction Parameters

Table 4 displays the reproductive periods and total fecundity of offspring of the treated
females. The results indicated that, in the treatments involving insecticides played significant
effect on the adult pre-oviposition period (APOP) as well as total pre-oviposition period
(TPOP) of C. carnea (Table 4). The mean total fecundity in flupyradifurone was 303.8
offspring/individual. It was significantly upper than those (286.52, 258.38 and 246.62
offspring/individual for control, tebufenozide and clothianidin treatment respectively). The
data reveals a dramatically significant decrease in the oviposition period to compare with
control that was varied from 21.62 to 26.62 days on tebufenozide and flupyradifurone
treatment (Table 4).

Table 4. Mean (xSE) reproductive period and total fecundity of offspring of Chrysoperla
carnea in control, and sublethal concentrations of clothianidin, tebufenozide, and
flupyradifurone treatments.

Parameter CK clothianidin tebufenozide flupyradifurone
Oviposition period (days) 25.57+0.23 21.90+0.23° 21.62+0.29° 26.62+0.25°
LAPOP (days) 2.48+0.08° 2.62+0.07% 2.17+0.02%® 2.88+0.07 °
2TPOP (days) 23.55+0.292 19.68+0.34¢ 24.27+0.27% 22.95+0.29°

Total fecundity
(offspring/individual)
The standard errors were calculated using the bootstrap procedure with 100,000 samples. The means followed by
different letters in the same row are significantly different using the paired bootstrap test at 5% significance level.
CK is the check treatment (water control).
1. APOP= adult pre-oviposition period (the duration from adult emergence to the first oviposition), and 2. TPOP =
total pre-oviposition period (the duration from egg to the first oviposition).

286.52+2.81° 246.62+2.56° 258.38+3.48° 303.8+2.86%

Population Parameters

Table 5 represents population growth parameters of C. carnea after treatment with the
evaluated insecticides. Based on the table 5, the lowest and the highest values of GRR were
observed in clothianidin and distilled water, respectively. The Ro values decreased in

clothianidin and tebufenozide treatments (Table 5). In addition, the r value in clothianidin
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treatment was significantly higher than the other treatments (0.148, 0.150 and 0.155 day* for
tebufenozide, control and flupyradifurone respectively). The highest A was recorded for
clothianidin (1.190 day™) compared to the other treatments. Mean generation time (T) ranged
from 27.61 to 32.93 days for the green lacewings treated with clothianidin and control,
respectively (Table 5).

Table 5. Mean comparison of the life table parameters (mean +SE) of Chrysoperla carnea
among sublethal concentrations of clothianidin, tebufenozide, and flupyradifurone, control
treatments.

Parameters CK clothianidin tebufenozide flupyradifurone
r (day?) 0.150+0.004° 0.174+0.005* 0.148+0.004° 0.155+0.004°
/. (day?) 1.162+0. 004° 1.190+ 0.006* 1.160+0.004° 1.167+0.005°
Ro (offspring/individual) 143.26 +16.07° 123.31+14.01°  129.18+14.69° 151.9+17.26°
GRR (offspring/individual) 164.35+17.972 134.07 £13.99°  144.32 +15.07° 159.41+17.17°
T (days) 32.93+0.35° 27.61+ 0.36° 32.63+0.232 32.40+0.332

The standard errors were calculated using the bootstrap procedure with 100,000 samples. The means followed by
different letters in the same row are significantly different using the paired bootstrap test at 5% significance level.
CK is the check treatment (water control).

Survival and Fecundity

Figure 1 demonstrates the daily survival of both untreated and treated individuals of C.
carnea with different insecticides. Exposure to sublethal concentration of the insecticides led
to reduction in survival. The total lifetime for the untreated C. carnea (controls) was 58 days;
while, it was 53, 49 and 48 days for flupyradifurone, clothianidin, and tebufenozide
treatments, respectively. In addition, the maximum value of my was 6.60 eggs/female/day for
untreated green lacewing, which was in day 46 of the lifespan (Fig. 2). However, The peak
values of my for flupyradifurone, clothianidin and tebufenozide treatments were 7.20, 5.83
and 9.16 eggs/female/day, respectively, which occurred on days 48, 32 and 45 (Fig. 2). The
age stage-specific survival rate (Sy;) curve indicated the chance that a green lacewing egg
will survive to age x and stage j (Fig. 3). Age-stage life expectancy (ey) curve of C. carnea
is shown in Figure 4. The highest amounts of this parameter recorded for clothianidin,
flupyradifurone and tebufenozide treatments in the female sex were 32.05, 35.97 and 27.92
days, on the 13", 15" and 18" days, respectively. Based on the e curve, these values
demonstrated a downward trend. In the male sex, these values were 24.33, 33.95 and 28.02
days, on the 15™, 14" and 16™ day, respectively (Fig. 4). The life expectancy in males and
females in control were 32.02 and 32.95 days on 16" and 17™ day, respectively (Fig. 4).
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Fig. 3. Age-stage specific survival rate (sy) of Chrysopa carnea for control and different
insecticides: control (A), clothianidin (B), flupyradifuron (C), tebufenozide
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Discussion

Generally, a single chemical control strategy against pests cannot be successful,
especially when the pesticides are not selected to have minimal effects on natural enemies
and the environment, as well as limited effects on specific pest species (Kaplan et al., 2012).
A various studies represent the effect of the sublethal effects of different pesticides on
biological parameters of various natural enemies (Corrales & Campos, 2004; Sabry & El-
Sayed, 2011; Amarasekare & Shearer, 2013). The current study provided the population
parameters and demographic data related to offspring of C. carnea that treated with sublethal
(LCs0) concentration of three insecticides (clothianidin, flupyradifurone and tebufenozide).
Based on the results of this study, sublethal concentration (LCso) of these insecticides had a
significant effect on developmental time of both sexes in C. carnea. The highest longevity of
males and females were observed in flupyradifurone treatment. Results of present study
indicated that clothianidin treatment resulted in the lowest total life span at both sexes,
compared with the other treatments. These findings are consistent with those in other studies
which found the lowest life span period for the adult of C. carnea treated with fipronil and
imidacloprid (Kumar & Santharam, 1999; Medina et al., 2003a). That is while Elzen (2001)
showed a shorter life-span for Orius insidiosus (Say) treated with endosulfan.

Acquired analysis showed that different treatments had significant effects on pre-
oviposition and total pre-oviposition periods and decreased the oviposition period. The
results are in line with those from other studies which focused on the effects of pyriproxyfen,
permethrin and fenvalerate on C. carnea adult individuals (Grafton-Cardwell and Hoy 1985;
Medina et al., 2003b). Contrarily, Vifiuela et al. (2001), reported that tebufenozide did not
affect fecundity of C. carnea adults by residual assay. Fecundity of C. carnea individuals
was considerably affected by tebufenozide and clothianidin in the current study. However,
flupyradifurone treatment caused a significant increase in fecundity of C. carnea adults. In
agreement with this result, Rezaei et al. (2007) and Golmohammadi & Hejazi (2014),
indicated a significant reduction in fecundity of C. carnea when it was treated with
propargite, pymetrozine and indoxacarb.

Life table analyses are considered as significant and outstanding tools in population
ecology and pest management, because they combine data on all life history parameters,
including survival, stage differentiation, and reproduction (Huang et al., 2017). Analogically
speaking, demographic toxicology has been recognized as a better measure of response to
toxicants, compared with the individual life history traits (Forbes & Calow, 1999). The r
(intrinsic rate of increase) parameter is the most important parameter that describing the
growth potential of a population (Li et al., 2017). The demographic parameters of the current
study demonstrated that the highest r and 2 (finite rate of increase) values of C. carnea was

observed when treated with clothianidin. While, that was the lowest values for net
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reproduction rate (Ro), gross reproductive rate (GRR) and mean generation time (T) occurred
with clothianidin compared with other treatments. These findings are in agreement with the
study of Rezaei et al. (2007), which showed of C. carnea have the lowest population
parameters, when treated by pymetrozine, compared to control treatment. In other study
Golmohammadi et al. (2013) reported that the lowest values for Ry and GRR parameters was
observed in green lacewing treated with indoxacarb (LCas concentration). Regarding the
curves of survival and age-specific fecundity, a green lacewing treated with insecticides, has
a downward trends in I, and myvalues. Godoy et al. (2004) also reported reductions in fertility
of adult female Chrysoperla externa (Hagen) after topical applications of lufenuron. The
reduction value for fecundity were reported in previous studies for C. carnea and
Ceraeochrysa cuban (Hagen) respectively, when treated by fipronil, imidacroprid,
pymetrozin and diflubenzuron respectively (Huerta et al., 2003; Rezaei et al., 2007; Ono et
al., 2017).

In another study, Mizell & Schiffhauer (1990) showed pyrethroids were not toxic to
adults of Chrysoperla rufilabris. Also, the adult survivorship of C. carnea was significantly
lower in endosulfan and cypermethrin, (Rimoldi et al., 2008); that these results are in
agreement with our data for clothianidin and tebufenozide. The age-specific fecundity,
survival, and life-expectancy curves demonstrated that sublethal concentrations of
clothianidin, flupyradifurone and tebufenozide caused significant reduction in these
parameters of C. carnea. Barbosa et al. (2017), in line with the results of the present study,
reported that application of flupyradifurone at 0.22 and 2.19 g a.i./L reduced the population
of C. carnea drastically compared with untreated check. Similar to our finding, significantly
higher toxicity of emamectin benzoate on adults was reported 7 and 14 days after treatment
(Khan et al., 2015).

Using the IOBC (International Organization of Biological Control) method, it is feasible
to determine the hazard classes of tested compounds (Rezaei et al., 2007). In current study,
the assessment was made based on the statistical comparisons with no hazard class
determination. Similar to our data, imidacloprid was slightly harmful (Group II) against C.
carnea in the laboratory (Talebi et al., 2008). However, pesticides are considered as
economical and effective tools for pest management with large generality in most sectors of
agricultural production, which should be selected from products with minimum effect on
environment, and natural enemies (Damalas & Eleftherohorinos, 2011; Havasi et al., 2020).

The stability of resistance in the absence of exposure to insecticides is very crucial in
the utilization of natural enemies in IPM (Shankarganesh et al., 2017). Natural enemies play
a fundamental role in any IPM program, and the use of insecticides in the ipm system must
be done carefully. Therefore, the main challenge is maximize the role of natural enemies
(Shankarganesh et al., 2017; Ullah & Lim, 2017). In conclusion, clothianidin and
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tebufenozide, were toxic to adults of C. carnea. In contrast, flupyradifurone may be
effectively utilized in IPM programs with a view of safety to the natural enemy, C. carnea.
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