Abbasi, F., Abolfazl, N., Rezvani, M., Goodarzi, M., Karimi, M., Eslami, K., Taheri, M., Khosravi, H., Moosavi, S. H., Firoozabadi, A., Baghani, J., Abbasi, N. and Akbari, M. (2020). Assessment of water use and water productivity in Country Vineyards. Irrigation and drainage structures Engineering research, 21(80), 133-148. (in Persian).
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998). Crop evapotranspiration Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Publications Fao. 300p.
Alizadeh, A. (2008). Trickle irrigation (principles and practices). Mashhad, Iran. Astan ghods Imam Reza university (in Persian).
Cancela, J. J., Trigo-Córdoba, E., Martínez, E. M., Rey, B. J., Bouzas-Cid, Y., Fandiño, M., & Mirás-Avalos, J. M. (2016). Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agricultural Water Management, 170, 99-109.
Civit, B., Piastrellini, R., Curadelli, S., and Arena. A. P. (2018). The water consumed in the production of grapes for vinification (Vitis vinifera). Mapping the blue and green water footprint. Ecological Indicators, 85, 236-243.
Dolatibaneh, H. (2016). Comprehensive management of grape growth. Kurdistan, Iran. Kurdistan university (in Persian).
Doorenbos, J. 1977. Guidelines for predicting crop water requirements: FAO, Roma (Italia).
Ghasedi yulghonolu, S. Abyaneh, H. Nejatian, M. A. Maleki, M., & Karimi, R. (2018). Effects of altering furrow to drip irrigation on physiological traits and yield of sultana grapevine (Vitis vinifera L). Iranian journal of Horticultural science, 3(49), 743-753 (in Persian).
Jolaini, M. (2006). Investigation on effect of drip irrigation methods and different levels of water on yield and water use efficiency of grape. Journal of Agricultural Engineering Research, 28(7), 69-78 (in Persian).
Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant of plant-based methods. Journal of Experimental Botany, 55, 2427-2436.
Karmeli, D., Keller, J. (1975). Trickle irrigation design (No. 631.7 K3).
Mullins, M. G., Bouquet, A., and Williams, L. E. (2007). Biology of the grapevine. Publications university press cambridge. Biology of Horticultural crops. 178p.
Nakhjavanimoghadam, M. M. Najafi, A. Sadrghaen, S. H. Farhadi, A. (2010). Effect of different levels of irrigation and plant density on grain yield and yield components and water use efficiency in Maize cv. KSC 302. Seed and plant production journal, 1(2), 73-90 (in Persian).
Nejatiyan, M. A. (2014). Comprehensive guide to grape production and processing. Agricultural education and promotion (in Persian).
Netzer, Y., Yao, C., Shenker, M., Bravdo, B., and Schwartz, A. (2009). Water use and the development of seasonal crop coefficients for Superior Seedless grapevines to an open-gable trellis system. Irrigation Science, 27:109-120.
Nikanfar, R. & Rezaei, R. (2015). Response of old grapevine to switch irrigation system from surface to drip or babbler. Iranian journal of Horticultural science and technology, 2(16), 161-170.
Pisciotta, A., Lorenzo, R. D., Santalucia, G., and Barbagallo, M. G. (2018). Response of grapevine (Cabrenet Sauvignon cv) to above ground and subsurface drip irrigation under arid condition. Agriculture Water Management, 197,122-131.
Saayman, D., and Lambrechts, J. J.N. (1995). The effect of irrigation system and crop load on the vigour of Barlinka table grapes on a sandy soil, Hex River Valley. South African Journal of Enology and Viticulture, 16,26-34.
Seyfi, M. R, & Kalhor, M. (2010). Comprehensive and illustrated guide to growing grape (planting, growing, harvest). Sari, Iran. Agricultural education and promotion publications (in Persian).
Shearer, G., Kohl, D. H., and Chien, S. H. (1978). The nitrogen-15 abundance in a wide variety of soils. Soil science Society of America Journal, 42(6), 899-902.
Soar, C. J., Loveys, B. R. (2007). The effect of changing patterns in soil‐moisture availability on grapevine root distribution, and viticultural implications for converting full‐cover irrigation into a point‐source irrigation system. Australian Journal of Grape and Wine Research, 13(1), 2-13.
TCCIMASTAT (2018). Agriculture and Commercial data available on
http://TCCIMA.ir
Vanino, S., Pulighe, G., Nino, P., Michele, C., Blognesi, S. F., and D’Urso, G. (2015). Estimation of Evapotranspiration and Crop Coefficients of Tendone Vineyards using Multi-Sensor Remote Sensing Data in a Mediterranean Environment. Remote Sensing, 7,14708-14730
Williams, L. E., and Ayars, J. E. (2005). Water use of Thompson Seedless grapevines as affected by the application of gibberellic acid and trunk gridling-practices to increase berry size. Agricultural and Forest Meteorology, 129,85-94.
Williams, L. E., Phene, C. J., Grimes, D. W., and Trout, T. J. (2003). Water use of mature Thompson Seedless grapevine in California. Irrigation Science, 22,11-18.
Xiaochi, Ma., Karen, A., and Sanguinet, W. (2020). Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop eater use efficiency while restricting root growth. Agriculture water management Journal, (231), 105993
Yunusa, I. A. M., Walker, R. R., Loveys, B. R., and Blackmore, D. H. (2000). Determination of transpiration in irrigated grapevines: comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrigation Science, 20,1-8.
Yulghonolu, S. G., Abyaneh, H. Z., Nejatiyan, M. A., Maleki, M., and Karimi. (2017). Effects of altering furrow to drip irrigation systems on physiological traits and yield of Sultana grapevine (vitis vinifera L.). Iranian Journal of Horticulture Science, 49(3), 743-753
Zoebl, D. (2006). Is water productivity a useful concept in agricultural water management. Agricultural Water Management, 84,265-273.