- Satyavani KS, editor Green Synthesis of Silver Nanoparticles by Using Stem Derived Callus Extract of Bitter Apple (Citrullus Colocynthis). 2011.
- Sivaranjani K, Meenakshisundaram M, editors. Biological Synthesis of Silver Nanoparticles Using Ocimum Basillicum Le Af Extract And Their Antimicrobial Activity. 2013.
- Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83.
- Naidu K, Govender P, Ada J. Bioedical application and toxicity of nanosilver. Med Technol. 2015;29(2):13-9.
- Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 2012;112(5):841-52.
- Gamazo C, Prior S, Concepcion Lecaroz M, Vitas AI, Campanero MA, Perez G, et al. Biodegradable gentamicin delivery systems for parenteral use for the treatment of intracellular bacterial infections. Expert Opin Drug Deliv. 2007;4(6):677-88.
- Madureira AR, Nunes S, Campos DA, Fernandes JC, Marques C, Zuzarte M, et al. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches. Int J Nanomedicine. 2016;11:3621-40.
- Quang HT, Van Quy N, Anh-Tuan L. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4(3):033001.
- Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces. 2013;108:255-9.
- Daoud S, Mona AMA, Dalal HM, Alkhalifah MME, Afrah EM. Biosynthesis of silver nanoparticles using salvia off Icinalis and assessment of their anti- bacterial activity. Int J Curr Res. 2015;7(10):21548-52.
- Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine. 2014;9:121-7.
- Prasad R. Synthesis of Silver Nanoparticles in Photosynthetic Plants. J Nanopart. 2014;2014:963961.
- AH S. Evaliuation the effect of silver nanoparticles and cefotaxim on healing of experimentaly induced infected fractured bones in rabbits: University of Baghdad 2016.
- Amooaghaie R, Saeri MR, Azizi M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol Environ Saf. 2015;120:400-8.
- Thamer N, Almashhedy L. Acute Toxicity of Green Synthesis of Silver Nanoparticles Using Crocus Sativud L. On White Albino Rats. Int J Phytopharm. 2016;7:13-6.
- Gomaa EZ. Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: A green approach. J Genet Eng Biotechnol. 2017;15(1):49-57.
- P PS, T KS. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem Biophys Rep. 2017;10:76-81.
- Velu M, Lee JH, Chang WS, Lovanh N, Park YJ, Jayanthi P, et al. Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. Biotech. 2017;7(2):147.
- Phull A-R, Abbas Q, Ali A, Raza H, kim SJ, Zia M, et al. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J Pharm Sci. 2016;2(1):31-6.
- Skandalis N, Dimopoulou A, Georgopoulou A, Gallios N, Papadopoulos D, Tsipas D, et al. The Effect of Silver Nanoparticles Size, Produced Using Plant Extract from Arbutus unedo, on Their Antibacterial Efficacy. Nanomaterials (Basel). 2017;7(7).
- Panda SK. Ethno-medicinal uses and screening of plants for antibacterial activity from Similipal Biosphere Reserve, Odisha, India. J Ethnopharmacol. 2014;151(1):158-75.
- Hamedi S, Shojaosadati SA, Mohammadi A. Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. J Photochem Photobiol B. 2017;167:36-44.
- Syed B, M NN, B LD, K MK, S Y, S S. Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzyme Microb Technol. 2016;95:128-36.
- Verma DK, Hasan SH, Banik RM. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J Photochem Photobiol B. 2016;155:51-9.
- Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine. 2014;9:2399-407.
- Patra JK, Das G, Baek KH. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J Photochem Photobiol B. 2016;161:200-10.
- Anand K, Tiloke C, Naidoo P, Chuturgoon AA. Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J Photochem Photobiol B. 2017;173:626-39.
- Venugopal K, Ahmad H, Manikandan E, Thanigai Arul K, Kavitha K, Moodley MK, et al. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. J Photochem Photobiol B. 2017;173:99-107.
- Alessandrini F, Vennemann A, Gschwendtner S, Neumann AU, Rothballer M, Seher T, et al. Pro-Inflammatory versus Immunomodulatory Effects of Silver Nanoparticles in the Lung: The Critical Role of Dose, Size and Surface Modification. Nanomaterials (Basel). 2017;7(10).
- Fierascu R, IONa R, Dumitriu I. Noble metals nanoparticles synthesis in plant extracts. J synthesis. 2010;1:22.
- J.B. H. Phytochemical Methods. Methods of Plant Analysis. Dordrecht: Springer; 1984.
- Vidhu VK, Philip D. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectrochim Acta A Mol Biomol Spectrosc. 2014;117:102-8.
- M Awwad A, Albiss B, L Ahmad A. Green synthesis, characterization and optical properties of zinc oxide nanosheets using Olea europea leaf extract. Adv Mater Lett. 2014;5(9):520-4.
- Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11.
- Yoshikawa M, Yoneda T, Takenaka H, Fukuoka A, Okamoto Y, Narita N, et al. Distribution of muscle mass and maximal exercise performance in patients with COPD. Chest. 2001;119(1):93-8.
- Burtis CA, Ashwood ER, Bruns DE. ietz textbook of clinical chemistry and molecular diagnostics. 3rd ed. Philadelphia, 1999.
- Snedecore GW, Chochran WG. Statistical methods. 6th ed: The Iowa state University Press; 1973.
- Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18:104 -5.
- DeKosky ST, Carrillo MC, Phelps C, Knopman D, Petersen RC, Frank R, et al. Revision of the criteria for Alzheimer's disease: A symposium. Alzheimers Dement. 2011;7(1):e1-12.
- Rodrigues MR, Kanazawa LK, das Neves TL, da Silva CF, Horst H, Pizzolatti MG, et al. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol. 2012;139(2):519-26.
- Muniyappan N, Nagarajan NS. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem. 2014;49(6):1054-61.
- Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1-2):83-96.
- Veera bN, Rama K, Rajkiran B, Jahnavi A, Manisha RD, Pratap RMP. Green Synthesis of plant-mediated silver nanoparticles using Withania somnifera leaf extract and evaluation of their antimicrobial activity. Int J Adv Res. 2013.
- Tanamatayarat P. Antityrosinase, antioxidative activities, and brine shrimp lethality of ethanolic extracts from Protium serratum (Wall. ex Colebr.) Engl. Asian Pac J Trop Biomed. 2016;6(12):1050-5.
- Stamplecoskie KG, Scaiano JC. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc. 2010;132(6):1825-7.
- Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AAA, Kadhum AAH, Mohamad AB. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed. 2013;3(1):58-63.
- Balavandy SK, Shameli K, Biak DR, Abidin ZZ. Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chem Cent J. 2014;8(1):11.
- Saravanan M, Vemu AK, Barik SK. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B Biointerfaces. 2011;88(1):325-31.
- Ahmad N, Shree K, Srivastava M, Dutta R. Novel rapid biological approach for synthesis of silver nanoparticles and its characterization. Int J Pharmaco and Pharmaceutical Sci. 2014;1:28-31.
- Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Res Lett. 2016;11(1):40.
- Supraja S, Ali SM, Chakravarthy N, Jaya Prakash Priya A, Sagadevan E, Kasinathan MK, Sindhu S, Arumugam P. Green synthesis of silver nanoparticles from Cynodon dactylon leaf extract. Int J Chem Tech. 2013;5(1):271-7.
- Ranjbar A, Ataie Z, Khajavi F, Ghasemi H. Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat. Nanomed J. 2014;1(3)::205-11.
- Safwat GM, Mohammed ET. Salvia officialis olis Improves the athreogenic index and cardiotoxicity in albino rabbits treated with 5-flouroracil. Int J Pharmacol Biosci. 2015;6(2):59-66.
- Horvathova E, Srancikova A, Regendova-Sedlackova E, Melusova M, Melus V, Netriova J, et al. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress. Mutagenesis. 2016;31(1):51-9.
- Barbinta-Patrascu ME, Bunghez IR, Iordache SM, Badea N, Fierascu RC, Ion RM. Antioxidant properties of biohybrids based on liposomes and sage silver nanoparticles. J Nanosci Nanotechnol. 2013;13(3):2051-60.
- Afifi M, Abdelazim AM. Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant system in the brain of diabetic rats. Asian Pac J Trop Biomed. 2015;5(10):874-7.
- Prasannaraj G, Sahi SV, Ravikumar S, Venkatachalam P. Enhanced Cytotoxicity of Biomolecules Loaded Metallic Silver Nanoparticles Against Human Liver (HepG2) and Prostate (PC3) Cancer Cell Lines. J Nanosci Nanotechnol. 2016;16(5):4948-59.
- AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279-90.
- Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014;98(5):1951-61.
- Schluesener JK, Schluesener HJ. Nanosilver: application and novel aspects of toxicology. Arch Toxicol. 2013;87(4):569-76.
- Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45-9.
- Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, B V, Bhadra MP, et al. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4(3):316-35.
- Abo-Haded HM, Elkablawy MA, Al-Johani Z, Al-Ahmadi O, El-Agamy DS. Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One. 2017;12(3):e0174295.
- Pani Jyoti P, Singh R, Pani S. Small Size Silver Nanoparticle’s Corrosive and Hazardous Manifestations on Mature and Developing Kidney Following Accumulation in Pregnant Mice and Offspring’s after Serial Oral Bolus Experimental Application: A New Chapter in Teratogenicity and Toxicity Search. J Cytol Histol. 2017;8:3.
- Qin G, Song T, Shibin L, Haoliang L, Yanwu W, Peng Z, et al. Toxicological Evaluation of Silver Nanoparticles and Silver Nitrate in Rabbits Following 28 Days of Repeated Oral Exposure. Environ Toxicol. 2017;11:1-10.
- Hunt PR, Marquis BJ, Tyner KM, Conklin S, Olejnik N, Nelson BC, et al. Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. J Appl Toxicol. 2013;33(10):1131-42.
- Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694-703.
- Ramamoorthy SK, Hephziba R. Acute renal failure post high dose methotrexate infusion successfully managed with high dose folinic Acid and high flux dialysis. Indian J Hematol Blood Transfus. 2013;29(2):90-2.
- Garneau AP, Riopel J, Isenring P. Acute Methotrexate-Induced Crystal Nephropathy. N Engl J Med. 2015;373(27):2691-3.
- Schwartz S, Borner K, Muller K, Martus P, Fischer L, Korfel A, et al. Glucarpidase (carboxypeptidase g2) intervention in adult and elderly cancer patients with renal dysfunction and delayed methotrexate elimination after high-dose methotrexate therapy. Oncologist. 2007;12(11):1299-308.
- Harms J, Khawaja A, Taylor M, Han X, Mrug M. Recovery of methotrexate-induced anuric acute kidney injury after glucarpidase therapy. SAGE Open Med Case Rep. 2017;5:2050313X17705050.
- Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445-71.
73. Weingart J, Vabbilisetty P, Sun XL. Membrane mimetic surface functionalization of nanoparticles: methods and applications. Adv Colloid Interface Sci. 2013;197-198:68-84.
|