- شیروانی، م. و ح. شریعتمداری. 1381. استفاده از همدماهای جذب سطحی در تعیین شاخصهای ظرفیت بافری و نیاز استاندارد فسفر برخی خاک های استان اصفهان. علوم و فنون کشاورزی و منابع طبیعی، 6 (1)، 121 -129.
- واثقیراد، ه.، ک. شهبازی و ع. خانمیرزایی. 1394. جذب نیکل در برخی خاکهای آهکی ایران. نشریه مدیریت خاک و تولید پایدار. 5 (3)، 113-127.
- Abe, I., S. Iwasaki, Y. Iwata, H. Kominami, & Y. Kera. (1998). Relationship between production method and adsorption property of charcoal. TANSO. 185: 277-284.
- Agbenin, J. O., & Tiessen, H. (1995). Phosphorus sorption at field capacity and soil ionic strength. Kinetics and transformation. Soil Sci. of Am. J. 59, 998-1005.
- Amer, F., Mahmoud, A. A., & Sabet, V. (1985). Zeta potential and surface area of calcium carbonate as related to phosphate sorption. Soil Sci. Soc. of Am. J. 49,1137–1142.
- Bahi, G. S., & Toor, G. S. (2002). Influence of poultry manure on phosphorus availability and the standard phosphate requirement of crop estimated from quantity–intensity relationships in different soils. Biores. Tech., 85, 317–322.
- Bird, I., Ascough, P. L., Young, I. M., Wood, C. V. & Scott, A. C. (2008). X-ray microtomographic imaging of charcoal. J. Archaeol. Sci. 35: 2698–2706.
- Cabera, A., Cox, L., Spokas, K., Hermosin, M. C., Cornejo, J., & Koskinen, W. C. (2011). Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methlylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents, J. Agric. Food Chem. 59, 12550-12560.
- Cornelissen G., Gustafsson O., Bucheli T. D., Jonker M. T. O., Koelmans A. A., & Van Noort P. C. M. (2005). Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. and Tech. 39(18):6881-6895.
- Cui, H. J., Wang, M. K., Fu, M. L., & Ci, E. (2011). Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. of Soils and Sediments, 11, 1135-1141.
- DeLuca, T. H., Gundale, M. J., MacKenzie, M. D., & Jones, D. L. (2015). Biochar effects on soil nutrient transformations. In Biochar for Environmental Management: Science, Technology and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, Volume 2, pp. 421–454. ISBN 978-0415704151.
- Dhillon, N. S., Dhesi, T. S., & Brar, B. S. (2004). Phosphate sorption-desorption characteristics of some Ustifluents of Punjab. J. of Indian Soc. of Soil Sci., 52, 17-22.
- Dume, B., Tessema D. A., Regassa, & Berecha G. (2017). Effects of Biochar on Phosphorus Sorption and Desorption in Acidic and Calcareous Soils. Civil and Environ. Res. 9(5): 10-20.
- Gaskin, J. W., Steiner, C., Harris, K., Das, C. & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51: 2061-2069.
- Gee, G. W. & J. W. Bauder. 1986. Particle-size analysis. PP. 383-410. In: Klute, A. (Ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Soil Sci. Soc. Amer. and Amer. Soc. Agro., Madison, WI.
- Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem, 103, 1–15.
- Guo, Y. & D. A. Rockstraw. (2007). Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation. Biores. Technol., 98, 1513–1521.
- Hall, G., S. Woodborne, & M. Scholes. (2008). Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology. 247, 384-400.
- Han, Y., Choi B. & Chem X. (2018). Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China. Sustainability 10, 1574- 1584.
- Havlin, J. L., J. D. Beaton, S. L. Tisadale, & W. L. Nelson. 2005. Soil fertility and fertilizers: An introduction to nutrient management.7th Ed. Pearson Education Inc., Upper Saddle River. New Jersey, USA. 515 p.
- Jiang,T.Y., J. Jiang, R. K. Xu, & Z. Li. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived bichar. Chemosphere 89: 249–256 .
- Keiluweit, M., P. S. Nico, M. G. Johnson, & M. Kleber. 2010. Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ. Sci. Technol. 44: 1247-1253.
- Kookana R. S., A. K. Sarmah, L. Van Zwieten, E. Krull, & B. Singh. 2011. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. Adv. in Agron., Volume 112: 103-143.
- Kundu, S., & K. Gupta. 2006. Arsenic adsorption onto iron oxidecoated cement (IOCC): regression analysis of equilibrium data with several isotherm model sand their optimization, Chemical Engineering Journal. 122: 93– 106
- Lair, G. J., F. Zehetner, Z. H. Khan, & M. H. Gerzabek. (2009). Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma 149, 39-44.
- Lehmann, J., J. Pereira da Silva, C. Steiner, T. Nehls, W. Zech, & B. Glaser. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249, 343–357.
- Lindsay, W. L., (2001). Chemical Equilibria in Soils. John Wiley & Sons, Inc., New York.
- Loeppert, R. H. & D. L. Suarez. 1996. Carbonate and gypsum. PP. 437-474. In: Sparks, D. L. (Ed.). Methods of Soil Analysis. Part 3. Chemical methods, Soil Sci. Soc. Amer. and Amer. Soc. Agro., Madison, WI.
- MacDowell, R., & Condron, L. (2001). Influence of soil constituents on soil phosphorus sorption and desorption, Commun. Soil Sci. Plant Anal. 32, 2531-2547.
- Mann, C. C. (2002). The real dirt on rainforest fertility, Science, 297, 920–923.
- Marschner, H. (1995). Mineral nutrition of higher plants, Academic Press, London.
- Morales M. M., N. Comerfoed, I. A. Guerrini, N. P. S. Falcao. & J. B. Reeves. (2014). Sorption and desorption of phosphate on biochar and biochar–soil mixtures. Soil Use and Management.
- Murphy J. & P. A. Riley. 1962. Modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31–36.
- Murphy, P. N. C., & R. J. Stevens. (2010). Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water, Air and Soil Pollution, 212, 101–111.
- Namgay, T., B. Singh, & B. P. Singh. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, & Zn to maize (Zea mays L). Australian Journal of Soil Research, 48, 638–647.
- Novak, J. M., W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts, & M. A. S. Niandou,. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci., 174, 105–112.
- Ohno, T. & A. Amirbahman. (2010). Phosphorus availability in boreal forest soils: a geochemical and nutrient uptake modeling approach. Geoderma, 155, 46–54.
- Olsen, S. R., & L. E. Sommer. (1982). Phosphorus. P.403-430. In: Page et al. (Ed), Methods of Soil Analysis: Part 2., 2nd ed., Agron. Monogr. 9., ASA and SSSA, Madison, WI.
- Parkinson, J. A.; & S. E. Allen. (1975). A wet oxidation procedure suitable for determination of nitrogen and mineral nutrients in biologicalmaterial. Commun. Soil Sci. Plant Anal., 6, 1–11
- Pena, F., & J. Torrent. (1990). Predicting phosphate sorption in soils of Mediterranean regions. Fertilizers Research, 23, 173–179.
- Raghothama, K. G. & A. S. Karthikeyan. (2005). Phosphate acquisition. Plant Soil, 274, 37- 48.
- Rahman, M. M., A. Pal, K. Uddin, K. Thu, & B. Saha. (2018). Statistical Analysis of Optimized Isotherm Model for Maxsorb III/Ethanol and Silica Gel/Water Pairs. Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 5 (4), 1-12.
- Rayment, G. E., & F. R. Higginson. 1992. Australian Laboratory Handbook of Soil and Water Chemical Methods, Inkata Press, Melbourne 1992, p. 330
- Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solids, PP. 417-435. In: Methods of Soil Analysis. Part 3. Chemical Methods. Soil Sci. Soc. Amer. and Amer. Soc. Agron., Madison, WI
- Shen, J., L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, & F. Zhang. (2001). Phosphorus dynamics: From soil to plant. Plant Physiol., 156, 997–1005.
- Singh, B., B. P. Singh, & A. L. Cowie. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 48: 516–525.
- Solis, P. & J. Torrent. (1989). Phosphate sorption by calcareous Vertisols and Inceptisols of Spain. Soil Sci. Soc. of Amer. J., 53, 456-459.
- Summer, M. E. & W. P. Miller. (1996). Cation exchange capacity and exchange coefficient. PP. 1201–1230. In: Methods of Soil Analysis. Part 3. Chemical Methods. Sparks, D. L. (Ed.). Soil Sci. Soc. Amer. & Amer. Soc. Agron., Madison, WI.
- Takaya, C. A., L. A. Fletcher, S. Singh, K. U. Anyikude, & B. Ross. (2016). Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 145, 518-527
- Thomas, G. W. (1996). Soil pH and soil acidity: 475-490. In: Spark, D.L. (Ed.), Methods of soil analysis. Part 3, Chemical Methods. SSSA. Madison, WI.
- Vance C. P., C. Uhde‐Stone & L. Allan. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157: 423-447.
- Walky A. & I. A. Black. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Science, 79: 459-465.
- Wang T, M. C. Arbestain, M. Hedley, & P. Bishop. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil. 357:173-187.
- Xu, G., H. B. Shao, & J. N. Sun. (2013). What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: direct or indirect mechanism? Ecological Engine., 52, 119–124.
- Xu, G., J. N. Sun, H. B. Shao, & S. X. Chang. (2014). Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecological Engine., 62, 54-60
- Xia, Y.; Y. Lou, C. Yang, & Y. Liang. (2002). Characteristics of phosphate adsorption and desorption in Paddy soils. Sci. Agric. Sin, 35, 1369–1374.
|