Bairwa, N., Agrawal, N. K., & Gupta, S. (2017). Development of counting algorithm for overlapped agricultural products. International Journal of Computer Applications, 975, 16-19.
Bishop, C. M. (2006). Pattern recognition and machine learning. eBook, Springer.
Carré, P., & Pouzet, A. (2016). Rapeseed market, worldwide and in Europe. Ocl, 21(1), D102- D113.
Chabok, F., Rezaee, A., & Asadpour, M. (2021). Sensor data fusion for positioning of agriculture mobile robotusing dempster-shafer method. Agricultural Mechanization and Systems Research, 22(78), 89-106.
Cordill, C., & Grift, T. E. (2016). Design and testing of an intra-row mechanical weeding machine for corn. Biosystems Engineering, 110(3), 247-252.
Dorj, U. O., Lee, M., & Lee, K. K. (2018). A computer vision algorithm for tangerine yield estimation. International Journal of Bio-Science and Bio-Technology, 5(5), 101-110.
Ehlert, D., Adamek, R., & Horn, H. J. (2013). Vehicle based laser range finding in crops. Sensors, 9(5), 3679-3694.
Karbasi, A., Mohammadzade, S., & Hendizade, H. (2019). Analysis of effective factors on increasing the area under rapeseed cultivation in rural areas. Journal of Space Economics and Rural Development, 8(3), 187-202.
Lenaerts, B., Craessaerts, G., Baerdemaeker, J. D., & Saeys, W. (2015). Crop stand density prediction using LIDAR-sensors. Proceedings of the Agricultural and biosystems engineering for a sustainable world. International Conference on Agricultural Engineering, 23-25 June, 2008. European Society of Agricultural Engineers (AgEng). Hersonissos, Crete, Greece.
Maertens, K., Reyns, P., De Clippel, J., & De Baerdemaeker, J. (2003). First experiments on ultrasonic crop density measurement. Journal of sound and Vibration, 266(3), 655-665.
Mavaddati, S. (2021). Rice classification with fractal-based features based on sparse structured principal component analysis and Gaussian mixture model. Journal of AI and Data Mining. 9(2), 235-244.
Payne, A. B., Walsh, K. B., Subedi, P. P., & Jarvis, D. (2019). Estimation of mango crop yield using image analysis–segmentation method. Computers and Electronics in Agriculture, 91, 57-64.
Rezaei, Y., Rezaee, A., Darakeh, F., & Azarakhsh, Z. (2021). Classification of polarimetric radar images based on SVM and BGSA. Signal and Data Processing, 18(1) :102-87. (in Persian)
Wang, Q., Nuske, S., Bergerman, M., & Singh, S. (2013). Automated crop yield estimation for apple orchards. Proceedings of the The 13th International Symposium on Experimental Robotics, June 18-21. Québec City, Canada.
Wang, Z., Ritou, M., Da Cunha, C., & Furet, B. (2020). Contextual classification for smart machining based on unsupervised machine learning by Gaussian mixture model. International Journal of Computer Integrated Manufacturing, 33(10-11), 1042-1054.
Yamamoto, K., Guo, W., Yoshioka, Y., & Ninomiya, S. (2017). On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors, 14(7), 12191-12206.
Zeng, S., Huang, R., Kang, Z., & Sang, N. (2014). Image segmentation using spectral clustering of Gaussian mixture models. Neurocomputing, 144, 346-356.