The main purpose of this study was to estimate the coefficients of different equations of water infiltration into soil, including Philip, Kostyakov, Kostyakov- Louise, Horton, and SCS to estimate the infiltration rate and potential for runoff in long-duration rainfall in two land uses (rangeland and agricultural) and three soil textures (loam, clay loam ,and silty clay loam). These models were fitted to the measured infiltration data to estimate the model parameters and find a suitable model for this region. After estimating the parameters, the infiltration rates for 2, 4 and 24 hours were calculated using the infiltration rate equations of each model. For this purpose, the infiltration data were obtained by double rings method from 16 point of different regions in the basin. The parameters of these models were then obtained, using least square optimization method. In order to evaluate the accuracy of the models, the coefficient of determination (R2), Nash Sutcliffe (NSE) efficiency, root mean square error (RMSE) and mean error (ME) were calculated. Comparisons of the mean of evaluation statistics using the Tukey method showed that the method of estimating cumulative infiltration in the Kostyakov-Louise model had a more-stable trend compared to other models and was evaluated as the best in most soil texture classes and land uses. Means comparisons showed that despite the differences between the models in estimating the cumulative infiltration, the differences between the models in estimating the infiltration rate were not significant and were in the same group. Regardless of the model used, soil texture and land use are the two main factors affecting the final infiltration rate. According to the results, the rate of infiltration with time in agricultural use has significant changes, such that, in this use, it was initially high and decreased sharply with increasing time from 2 hours to 24 hours. In order to reduce the weakening effects of agricultural activities on soil quality and to increase the infiltration rate in long-duration rainfall and reduce runoff, management activities such as expansion of conservation agriculture, no-tillage, and minimum tillage farming operations will play a very effective role. |
- اکبری نودهی، ا. 1396. تاثیر تنش خشکی در مراحل مختلف رشد بر عملکرد و راندمان مصرف آب ذرت. نشریه مدیریت آب و آبیاری. سال 7. شماره ۲. 305-318.
- بابازاده، ح. عبدزادگوهری، ع. و آ. خنک. 1396. اثر مقادیر مختلف آب و کود نیتروژن بر عملکرد و اجزای عملکرد بادامزمینی. نشریه پژوهش آب در کشاورزی. جلد31. شماره4. 571-584.
- حقیقتی، ب. برومندنسب، س. و ع.ع. ناصری. 1394. تأثیر مدیریتهای مختلف کمآبیاری در روشآبیاری جویچهای و قطرهای نواری بر عملکرد سیبزمینی و بهرهوری آب. نشریه پژوهش آب در کشاورزی. ب. جلد 29. شماره2. 181-193.
- رضاییاستخروییه، ر. ایراندوست، م. و م. کامبخش. 1395. تأثیر کمآبیاری بر بهرهوری مصرف آب، عملکرد و اجزای آن در گیاه پنبه رقم ورامین. نشریه مدیریت آب و آبیاری. دوره 6. شماره2. 206-216.
- عبدزادگوهری، ع. 1388. بررسی تاثیر مدیریت آبیاری و کود نیتروژن بر عملکرد و اجزای عملکرد گیاه بادامزمینی در استان گیلان. پایاننامه کارشناسیارشد آبیاری و زهکشی. دانشکده کشاورزی و مهندسی علومآب. دانشگاه آزاد اسلامی واحد شوشتر. 99 صفحه.
- عبدزادگوهری، ع. امیری، ا. بابازاده، ح. و ح. صدقی. 1396. تخمین تابع تولید ارقام بادامزمینی در سطوح مختلف آب آبیاری و شوری. نشریه مدیریت آب و آبیاری. دوره 7. شماره 1. 87-104.
- عبدزادگوهری، ع. امیری، ا. بابازاده، ح. و ح. صدقی. 1397. اثر شوری و مدیریت آبیاری بر عملکرد و کارایی مصرف آب در ارقام بادامزمینی. نشریه تحقیقات آب و خاک ایران. دوره 49. شماره 2. 329-340.
- عبدزادگوهری، ع و ا. امیری. 1397. تابع تولید و بهرهوری مصرف آب گیاه بادامزمینی (رقم گیل) در شرایط آبیاری و افزودن کود نیتروژن. نشریه پژوهش آب در کشاورزی. جلد32. شماره1. 55-66.
- عبدزادگوهری، ع. و ا. صادقیپور. 1398. مدیریت علفهای هرز در مزارع بادامزمینی. انتشارات اندیشمندان پارس.تهران.
- ملکی، س. پیردشتی، ه. م. ن. صفرزاده ویشکایی. 1395. واکنش عملکرد و اجزایعملکرد بادامزمینی (Arachis hypogaea L) به کاربرد هم زمان آهن و گوگرد. نشریه تحقیقات کاربردی اکوفیزیولوژی گیاهی. دوره سوم، شماره اول. 59-74.
- Abdzad Gohari, A. Babazadeh, H. Amiri, E. and Sedghi, H. 2017. Estimate of Peanut Production Function under Irrigated Conditions and Salinity. Polish Journal of Environmental Studies. 27 (4). 1503-1512.
- Abou Kheira Abdrabbo, A. 2009. Macromanagement of deficit-irrigated peanut with sprinkler irrigation. Journal of Agriculture Water. 96.1409–1420.
- Amiri, E., Abdzad Gohari A. and Mianabadi, A. 2015. Evaluation of water schemes for peanut, using CSM-CROPGRO-Peanut model. Archives of Agronomy and Soil Science. 61(10). 1439-1453.
- Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., Nageswara Rao, R.C., Wright, G.C. and Patanothai, A. 2009. Association between aflatoxin contamination and drought tolerance traits in peanut. Field Crops Research.114:14–22.
- Carvalho m, .j. Vorasoot, n. Puppala, n., Muitia, a. and jogloy, S. 2017. Effects of terminal drought on growth, yield and yield components in Valencia peanut genotypes. 49 (3). 270-279.
- El-Habbasha, S.F., Okasha, E.M., Abdelraouf, R.E. and Mohammed, A.S.H. 2014. Effect of pressured irrigation systems, deficit irrigation and fertigation rates on yield, quality and water use efficiency of groundnut. International Journal of Chemical Technology Research. 7(1). 475-487.
- Frigman, A. 2004. Characterization of Groundnut (Arachis hypogaea L.) in Northern Ghana. Pakistan Journal of Biological Sciences. 7 (5). 838-842.
- Girdthai, T., Jogloy, S., Akkasaeng, C., Vorasoot, N., Wongkaew, S., Holbrook, C.C. and Patanothai, A. 2010. Heritability of, and genotypic correlations between, aflatoxin traits and physiological traits for drought tolerance under end of season drought in peanut (Arachis hypogaea L.). Field Crops Research, 118,169–176.
- Lamb, M.C. Sorensen, R.B. Nuti, R.C. Rowland, D.L. Faircloth, W.H. Butts, C.L. and J.W. Dorner. 2010. Impact of Sprinkler Irrigation Amount on Peanut Quality Parameters. 37:100–105.
- Pimratch S, Jogloy S, Vorasoot N, Toomsan B,Kesmala T, Patanothai A, and Holbrook, CC. 2010. Effects of drought on characters related to nitrogen fixation in peanut. Asian J. Plant Sci. 9: 402-413.
- Prabhu, R., Manivannan, N. Mothilal A. and Ibrahim, S. M. 2017. Variability analysis for yield, yield attributes and resistance to foliar diseases in groundnut (Arachis hypogaea L.). Indian Journal of Pure and Applied Biosciences. 5: 206–214.
- Prabhu, R., Manivannan, N., Mothilal A. and Ibrahim, S. M. 2015. Correlation coefficient analysis for yield and yield attributes in groundnut (Arachis hypogaea L.). Plant Archives. 15, 685–689.
- Shoba, D., Manivannan N. and Vindhiyavarman, P. 2012. Correlation and path coefficient analysis in groundnut (Arachis hypogaea L.). Madras Agricultural Journal. 99: 18-20.
- Sorensen. R.B. and C.L. Butts .2014. Peanut Response to Crop Rotation, Drip Tube Lateral Spacing, and Irrigation Rates with Deep Subsurface Drip Irrigation. Peanut Science. 41:111–119.
- Sriranjitha, P., Ramulu, V. Jayasree G. and Narender Reddy, S. 2018. Growth, Yield and Water Use Efficiency of Groundnut under Drip and Surface Furrow Irrigation. International Journal of Current Microbiology and Applied Sciences. 7(9): 1371-1376.
- Waseem, M., Kaleel, I., Mallikarjuna N. and Polisgowsar, B.S. 2018. Effect of micro sprinkler and surface irrigation on growth and yield of groundnut crop under raichur agro climatic conditions. Journal of Pharmacognosy and Phytochemistry. 7(1): 132-134.
|