Afshar, N. R., & Fahmi, H. (2019). Impact of climate change on water resources in Iran. International Journal of Energy and Water Resources, 3(1), 55-60.
Ahmadaali, K., Ramezani Etedali, H., & Hosseini Pazhouh, N. (2017). Assessment of modern irrigation systems in Qom province. Iranian Journal of Irrigation & Drainage, 11(5), 736-749. (In Persian)
Alshahethi, A. A. A., & Radhika, K. L. (2018). Estimating the Final Cost of Construction Project Using Neural Networks: A Case of Yemen Construction Projects. International Journal for Research in Applied Science & Engineering Technology, 6(11), 2141-2151.
Amen, R., Hameed, J., Albashar, G., Kamran, H. W., Shah, M. U. H., Zaman, K. U., ... & Ullah, S. (2020). Modeling the Higher Heating Value of Municipal Solid Waste for Assessment of Waste-To-Energy Potential: A Sustainable Case Study. Journal of Cleaner Production, 125575.
Arafa, M., & Alqedra, M. (2011). Early stage cost estimation of buildings construction projects using artificial neural networks. Early stage cost estimation of buildings construction projects using artificial neural networks, 4(1).
Arage, S. S., & Dharwadkar, N. V. (2017). Cost estimation of civil construction projects using machine learning paradigm. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 594-599). IEEE.
Bakas, T., Papadimitriou, Ι., & Argyri, P. (2020). Water crisis-beyond the destruction. Open Schools Journal for Open Science, 2.
Chandanshive, V., & Kambekar, A. R. (2019). Estimation of building construction cost using artificial neural networks. Journal of Soft Computing in Civil Engineering, 3(1), 91-107.
Closas, P., Bugallo, M. F., Coma, E., & Méndez, L. (2013, May). Prediction of influenza rates by particle filtering. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1046-1050). IEEE.
Cosgrove, W. J., & Rijsberman, F. R. (2014). World water vision: making water everybody's business. Routledge.
Demirhan, H., & Atilgan, Y. K. (2015). New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique. Energy Conversion and Management, 106, 1013-1023.
Douglas-Smith, D., Iwanaga, T., Croke, B. F., & Jakeman, A. J. (2020). Certain trends in uncertainty and sensitivity analysis: An overview of software tools and techniques. Environmental Modelling & Software, 124, 104588.
Ekung, S., Lashinde, A., & Adu, E. (2021). Critical Risks to Construction Cost Estimation. Journal of Engineering, Project, and Production Management, 11(1), 19-29.
El-Shater, T., Yigezu, Y. A., Shideed, K., & Aw-Hassan, A. (2017). Impacts of Improved Supplemental Irrigation on Farm Income, Productive Efficiency and Risk Management in Dry Areas. Journal of Water Resource and Protection, 9(13), 1709.
FAOSTAT. (2018). World food and agriculture. Statistical Pocketbook, FAO: Rome, Italy.
Flores, J. H. N., Faria, L. C., Rettore Neto, O., Diotto, A. V., & Colombo, A. (2021). Methodology for Determining the Emitter Local Head Loss in Drip Irrigation Systems. Journal of Irrigation and Drainage Engineering, 147(1), 06020014.
Gany, A. H. A., Sharma, P., & Singh, S. (2019). Global Review of Institutional Reforms in the Irrigation Sector for Sustainable Agricultural Water Management, Including Water Users’ Associations. Irrigation and drainage, 68(1), 84-97.
Gholizadeh-Sarabi, S., Davary, K., Ghahraman, B., & Shafiei, M. (2019). Historical study of coupled human-water system from socio-hydrological perspective, Case study: Mashhad basin. Iran-Water Resources Research, 15(4), 148-170. (In Persian)
Gomes, F. M., Pereira, F. M., Silva, A. F., & Silva, M. B. (2019). Multiple response optimization: Analysis of genetic programming for symbolic regression and assessment of desirability functions. Knowledge-Based Systems, 179, 21-33.
Gransberg, D. D., & Rueda, J. A. (2020). Construction equipment management for engineers, estimators, and owners. CRC Press.
Günaydın, H. M., & Doğan, S. Z. (2004). A neural network approach for early cost estimation of structural systems of buildings. International journal of project management, 22(7), 595-602.
Hamdi Ahmadabad, Y., Liaghat, A., Rasoulzadeh, A., & Ghaderpour, R. (2019). Investigation of in the Capita Water Consumption Variation in Iran Based on the Past Two-Deca Diet. Iranian Journal of Soil and Water Research, 50(1), 77-87. (In Persian)
Hassani, Y., Hashemy Shahdany, S. M., & Zahraei, B. (2020) Developing A New Operation-Economic Framework for Irrigation Networks without Water Market. Journal of Water and Soil Science, 24(1), 27-43. (In Persian)
Kadkhodaie, F., Asghari Moghaddam, A., Barzegar, R., & Gharekhani, M. (2020). Comparison of Neural Network and Neuro-Fuzzy Techniques to Improve the DRASTIC Frame Work (Case Study: Shabestar plain Aquifer). Water and Soil Science, 30(1), 1-14. (In Persian)
Karbachevsky, A., Baskin, C., Zheltonozhskii, E., Yermolin, Y., Gabbay, F., Bronstein, A. M., & Mendelson, A. (2021). Early-Stage Neural Network Hardware Performance Analysis. Sustainability, 13(2), 717.
Komkov, V., Choi, K. K., & Haug, E. J. (1986). Design sensitivity analysis of structural systems (Vol. 177). Academic press.
Larsen, P. E., Cseke, L. J., Miller, R. M., & Collart, F. R. (2014). Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks. Journal of Theoretical Biology, 359, 61-71.
Lester, E. I. A. (2017). Estimating. In: Project management, planning and control. The Netherlands: Elsevier, 61–65.
Matel, E., Vahdatikhaki, F., Hosseinyalamdary, S., Evers, T., & Voordijk, H. (2019). An artificial neural network approach for cost estimation of engineering services. International journal of construction management, 1-14.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Najarchi, M., shekari, H., jafarinia, R., Mokhtari, S., & Alizadeh, H. (2019). Optimization of Cropping Pattern and Water Resources at Different Levels of Irrigation for Hot and Dry Areas (Case study: Dehloran Plains, Ilam Province). Iranian Journal of Soil and Water Research, 50(6), 1351-1361. (In Persian)
NASA Executive Cost Analysis Steering Group. (2015). NASA cost estimating handbook. NASA, 63(4).
Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agronomy Journal, 104(5), 1336-1347.
Nonis, F., Barbiero, P., Cirrincione, G., Olivetti, E. C., Marcolin, F., & Vezzetti, E. (2020). Understanding Abstraction in Deep CNN: An Application on Facial Emotion Recognition. In Progresses in Artificial Intelligence and Neural Systems (pp. 281-290). Springer, Singapore.
Oki, T. (2020). World Water Resources at Stake. In Human Geoscience (pp. 89-95). Springer, Singapore.
Park, C. S. (2012). Fundamentals of Engineering Economics. Chan S. Park. Pearson Education.
Perry, C., Steduto, P., & Karajeh, F. (2017). Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations, Cairo, 42.
Pettang, C., Mbumbia, L., & Foudjet, A. (1997). Estimating building materials cost in urban housing construction projects, based on matrix calculation: the case of Cameroon. Construction and building materials, 11(1), 47-55.
Pourgholam-Amiji, M., Liaghat, A., Ghameshloua, A., Khoshravesh, M., Waqas, M.M. (2020). Investigation of the yield and yield components of rice in areas with shallow water table and saline. Big Data in Agriculture (BDA), 2(1), 36-40.
Pourgholam-Amiji, M., Liaghat, A., Vali, M. H., & Parsamehr, H. R. (2020). Construction of A Moisture Sensor for Smart Irrigation and Determine the Proper Location for Installation to Stop Irrigation to Prevent Water Loss. Water Management in Agriculture, 6(2), 21-36. (In Persian)
Qian, G., & Mahdi, A. (2020). Sensitivity analysis methods in the biomedical sciences. Mathematical Biosciences, 323, 108306.
Rampone, S., & Valente, A. (2017). Prediction of seasonal temperature using soft computing techniques: application in Benevento (Southern Italy) area. Journal of Ambient Intelligence and Humanized Computing, 8(1), 147-154.
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N. ... & Wu, Q. (2019). Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental modelling & software, 114, 29-39.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D. ... & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons.
Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324(5923), 81-85.
Schmidt, M., Carter, J., Stone, G., & O’Reagain, P. (2016). Integration of optical and X-band radar data for pasture biomass estimation in an open savannah woodland. Remote Sensing, 8(12), 989.
Vaghefi, S. A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H., & Abbaspour, K. C. (2019). The future of extreme climate in Iran. Scientific reports, 9(1), 1-11.
Valentín, F., Nortes, P. A., Domínguez, A., Sánchez, J. M., Intrigliolo, D. S., Alarcón, J. J., & López-Urrea, R. (2020). Comparing evapotranspiration and yield performance of maize under sprinkler, superficial and subsurface drip irrigation in a semi-arid environment. Irrigation Science, 38(1), 105-115.
Weber, F., Theers, S., Surmann, D., Ligges, U., & Weihs, C. (2018). Sensitivity analysis of ordinary differential equation models.
Wen, L., Li, Q., Li, Y., & Ma, Z. (2018). Carbon Emission and Economic Growth Model of Beijing Based on Symbolic Regression. Polish Journal of Environmental Studies, 27(1).
Wu, N., & Shih, S. G. (2020). Cost estimation through Monte Carlo simulation in architectural early design stage. The International Journal of Electrical Engineering & Education, 0020720920923308.
Yin, Z., Luo, Q., Wu, J., Xu, S., & Wu, J. (2021). Identification of the long-term variations of groundwater and their governing factors based on hydrochemical and isotopic data in a river basin. Journal of Hydrology, 592, 125604.
Zhang, Y. F., & Fuh, J. Y. H. (1998). A neural network approach for early cost estimation of packaging products. Computers & Industrial Engineering, 34(2), 433-450.
Zwaving, J. O. (2014). Probablistic estimating of engineering costs.