Ackers, P. (1992). Hydraulic design of two-stage channels. J. Water Mar. Engin. 96: 247-257.
Ackers, P. (1993). Flow formulae for straight two-stage channels. J. Hydraul. Res., 31(4), 509–531.
Agarwal, A., (1989). Interdependence of transport capacity and sediment textural characteristics. Thesis (MSc), University of Guelph, Guelph, Ontario.
Ali, M, Sterk G, Seeger M et al .(2011). Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds. Hydrol Earth Syst Sci Discuss 8(4):6939–6965.
Bayley, P. B. (1995). Understanding large river: floodplain ecosystems. Bio-Science, 45(3), 153-158.
Chen, Y. H., Mossa, J., & Singh, K. K. (2020). Floodplain response to varied flows in a large coastal plain river. Geomorphology, 354, 107035.
Finkner, S.C., Nearing, M.A., Foster, G.R. and Gilley, J.E. (1989). A simplified equation for modeling sediment transport capacity. Transactions of the American Society of Agricultural Engineers, 32 (5), 1545–1550.
Gourevitch, J. D., Singh, N. K., Minot, J., Raub, K. B., Rizzo, D. M., Wemple, B. C., & Ricketts, T. H. (2020). Spatial targeting of floodplain restoration to equitably mitigate flood risk. Global Environmental Change, 61, 102050.
Govers, G. (1990). Empirical relationships for the transport formulae of overland flow. In: D.E. Walling, A. Yair and S. Berkowicz, eds. Erosion, transport and deposition processes. Wallingford: IAHS Press, IAHS Publ. 189, 45–63. Available at: http://www. iahs.info/redbooks/189.htm.
Guy, B.T., Rudra, R.P., Dickenson, W.T. and Sohrabi, T.M. (2009). Empirical model for calculating sediment-transport capacity in shallow overland flow: model development. Biosystem Engineering, 103, 105–115.
Hamidifar. H., and Omid, M. (2013). Floodplain vegetation contribution to velocity distribution in compound channels. J. Civil Eng. Urbanism, 3(6), 357–361.
Hin. L. S., Bessaih. N., Ling. L. P., Ghani, A. A., Zakaria. N. A., and Seng. M. (2008). A study of hydraulic characteristics for flow in equatorial rivers. Int. J. River Basin Manage., 6(3), 213–223.
Karamisheva. R., Lyness. J. F., Myers. W. R. C., and Cassells. J. B .(2005). Improving sediment discharge prediction for overbank flows. Proc. ICE–Water Manage., 158(1), 17–24.
Karamisheva. R. D., Lyness. J. F., Myers. W. R. C., Cassells. J. B. C., and O’Sullivan. J.(2006). Overbank flow depth prediction in alluvial compound channels. Proc. ICE–Water Manage. 159(3), 195-205.
Lal, R. (1998). Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17(4):319–464.
Lambert M. F. and MYERS W. R. C. (1998). Estimating the discharge capacity in straight compound channels. Proceedings of the Institution of Civil Engineers. Water, Maritime & Energy. 130(2),84-94.
Liu, B.Y., Nearing, M.A., Shi, P.J. and Jia, Z.S. (2000). Slope length relationships for soil erosion loss for steep slopes. Soil Science Society of America Journal, 64 (5), 1759–1763.
Martin, L.A., and Myers, R.C. (1991). Measurement of overbank flow in a compound river channel. J. Ins. Water Environ. Manage.3(4), 645-657.
Mulahasn. S., Stoesser. T., and McSherry. R. (2017). Effect of floodplain obstructions on the discharge conveyance capacity of compound channels. J.Irrig. Drain Eng. Vol.143. No.11. pp. 1-11.143(11), 1-11.
Nehal. L., Yan. Z. M., Xia. J. H., and Khaldi. A.(2012). Flow through non-submerged vegetation. 16th Int. Water Technology Conf., IWTC 16, IWTA, Alexandria, Egypt.
Shafaei, H., Amini, A., Shideli, A.(2019). Assessing Submerged Vegetation Roughness in Streambed under Clear Water Condition Using Physical Modeling. Water Resources, 2019, Vol. 46, No. 3, pp. 377–383.
Tinoco. R. O., and Cowen. E. A.(2013). The direct and indirect measurement of boundary stress and drag on individual and complex arrays of elements. Exp. Fluids, 54(1509), 1–16.
Vigiak, O., Okoba, B.O., Sterk, G., Stroosnijder, L. (2005). Water erosion assessment using farmers’ indicators in the West Usambara Mountains, Tanzania. Catena 64, 307 – 320.
Wahl, T.L. (2000). Analyzing ADV data using WinADV, ASCE Joint Conference on Water Resources Engineering and Water Resources Planning and Management, Minneapolis, Minnesota, USA, July 30-August 2.
Wang Z, Yang X, Liu J, Yuan Y. (2015). Sediment transport capacity and its response to hydraulic parameters in experimental rill flow on steep slope. J Soil Water Conserv 70(1):36–44
Wormleaton. P. R., Allen. J., and Hadjipanos. P. (1982). Discharge assessment in compound channel flow. J. Hydraul. Div.108(10), 975-993.
Yang, C.T.(1972). Unit stream power and sediment transport. Journal of Hydraulics Division, American Society of Civil Engineers, 98, 1805–1825.
Zahiri. A., Dehghani. A.A., and Hezarjeribi. A. (2012). Determination of stage discharge curve for laboratory and river compound channels applying genetic algorithm. J. Water and Soil Conservation, 19(2), 179-192. (In Persian).
Zhang, G.H., Liu, Y.M., Han, Y.F. and Zhang, X.C.(2009). Sediment transport and soil detachment on steep slopes: I. Transport capacity estimation. Soil Science Society of America Journal, 73 (4), 1291–1297.
Zhang, G.H., Wang, L.L., Tang, K.M., Luo, R.O. and Zhang, X.C.(2012). Effects of sediment size on transport capacity of overland flow on steep slopes. Journal des Sciences Hydrologiques, 56(7).
Zhao, L., Zhang, K., Wu, S., Feng, D., Shang, H. and Wang, J.(2020). Comparative study on different sediment transport capacity based on dimensionless flow intensity index. Journal of Soils and Sediments.20,2289-2305.