Mass-fractal models have been frequently used to quantify soil particles size distribution. Since fractal dimension has numerous capabilities to predict different soil properties, this study aimed to determine the best soil primary particles size groups in estimation of fractal dimension of soil primary particles size. This study was done with 186samples of calcareous soils in southern parts of Iran located in Fars province. Soil particles size distribution was determined using combination of wet sieving and modified hydrometer method. Fractal dimensions were calculated using three methods including Tyler and Wheatcraft (DT), Sepaskhah and Tafteh (DS), and Kravchenko and Zhang (DK). Then, the relationship between DT and DK with contents of soil primary particles in different size groups were established. Results showed that regression relationship (power 2) between DT and DK was very strong (with determination coefficient of 1). In addition, DS regression relationship (linear) with DT and DK was strong. Results also revealed that mean values of DK and DS were significantly higher and lower than DT, respectively.As the particles size became smaller, accuracy of regression relationships between smaller particles size percent of a specific diameter and soil fractal dimensions (DT and DK) becomes more, and the maximum accuracy was observed in logarithmic relationship between fractal dimensions and clay percent. R2 of training data and that of test data, normalized root mean square error (%), and Nash-Sutcliffe coefficient statistics were 0.99, 0.98, 0.6, and 0.95 for logarithmic model between clay content and DT, and 0.98, 0.99, 0.25, and 0.94 for logarithmic model between clay content and DK, showing very strong relationship between clay content and fractal dimensions. Therefore, it is possible to calculate Tyler and Wheatcraft and Kravchenko and Zhang fractal dimensions by using clay content and very simple equations in a wide range of calcareous soils with different mechanical components. Thus, those fractal dimensions can be used to estimate physical, chemical, and especially hydraulic properties of calcareous soils, whose measurements are complex, expensive, and time consuming.It should be pointed out that the proposed relations are valid when primary particle size distribution of soil is determined using the method used in the present study. Otherwise, the relations should be tested and validated. |
- استواری، ی.، و ح. ا. بیگی هرچگانی. 1392. پیشنهاد توابع انتقالی تخمین رطوبت خاک بر اساس بعد فرکتال بافت خاک. نشریه آب و خاک. جلد 27، شماره 3، صفحههای 630 تا 641.
- اسماعیلنژاد، ل.، ج. سیدمحمدی، م. شعبانپور، و ح. رمضانپور. 1393. پیشبینی سطح ویژه و ظرفیت تبادل کاتیونی با استفاده از بعد فرکتالی توزیع اندازه ذرات خاک. تحقیقات آب و خاک. دوره 45، شماره 4، صفحههای 474 تا 463.
- جعفرزاده، ع. ا.، ن. دواتگر، و م. حکیمیان. 1377. بررسی پارامترهای توزیع فراوانی جامعه متغیرهای منتخب خاک در یک ردیف از واحدهای مختلف فیزیوگرافی نواحی دریای خزر. مجله دانش کشاورزی. جلد 8، صفحههای 147 تا170.
- رسولزاده، ع.، س. رضوی قلعه جوق، و م. ر. نیشابوری 1391. ارزیابی توابع انتقالی مختلف برای برآورد منحنی رطوبتی خاک در شهرستان نقده. مجله پژوهشهای آب در کشاورزی. جلد 26، شماره 3، صفحههای 303 تا 316.
- سازمان منابع طبیعی و جنگداری استان فارس. 1389. گزارش مشروح حوضه آبخیز سد درودزن. اداره آب منطقهای استان فارس. شیراز، ایران، صفحههای 15 تا 125.
- صادقی، م.، ع. ا. ایزدی، و ب. قهرمان. 1390. تخمین هدایت هیدرولیکی غیراشباع خاکها بر پایه هندسه فراکتالها. نشریه آبیاری و زهکشی ایران. جلد 5، شماره 1، صفحههای 43 تا 49.
- فروغیفر، ح.، ع. ا. جعفرزاده، ح. ترابی گلسفیدی، ن. علی اصغرزاده، ن. تومانیان، و ن. دواتگر. 1390. تغییرات مکانی برخی ویژگیهای فیزیکی و شیمیایی خاک سطحی در شکلهای اراضی مختلف دشت تبریز. مجله دانش آب و خاک. جلد 21، شماره 3، صفحههای 1 تا 21.
- مظفری، ح.، س. ع. ا. موسوی، و ع. سپاسخواه. 1398. اثر کاربری اراضی بر برخی ویژگیهای فیزیکی و شیمیایی یک خاک آهکی. نشریه پژوهشهای خاک (علوم خاک و آب). جلد 33، شماره 4، صفحههای 525 تا 541.
- هاشمی، س. س.، م. باقرنژاد، ح. ر. اولیایی، و م. نجفیقیری. 1393. مطالعه اثر رژیم رطوبتی خاک بر میکرومورفولوژی پدیدههای گچی در خاکهای استان فارس. نشریه پژوهشهای حفاظت آب و خاک. جلد 21، شماره 2، صفحههای 59 تا 83.
- یزدانی، و.، ب. قهرمان، ک. داوری، و م. ا. فاضلی. 1391. کاربرد بعد فراکتال اندازه ذرات خاک در برآورد هدایت هیدرولیکی اشباع. نشریه آب و خاک (علوم و صنایع کشاورزی). جلد 26، شماره 3، صفحههای 648 تا 659.
- Alfaro Soto, M.A., H.K. Chang, and M.Th. van Genuchten. 2017. Fractal-based models for the unsaturated soil hydraulic functions. Geoderma. 306:144-151.
- Bannayan, M., and G. Hoogenboom. 2009. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Res. 111:290-302.
- Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54:464-465.
- Deng, Y., C. Cai, D. Xia, S. Ding, and J. Chen. 2017. Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China. PLoS One. 12(3):1-21.
- Ersahin, S., H. Gunal, T. Kutlu, B. Yetgin, and S. Coban. 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma. 136(3):588-597.
- Feng, Y.,N. Cui, D. Gong, Q. Zhang, and L. Zhao. 2017. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric. Water Manag. 193:163-173.
- Filgueira, R., L. Fournier, G. Sarli, A. Aragon, and W. Rawls. 1999. Sensitivity of fractal parameters of soil aggregates to different management practices in a Phaeozem in central Argentina. Soil Tillage Res. 52(3):217-222.
- Fooladmand, H.R., and A.R. Sepaskhah. 2006. Improved estimation of the soil particle-size distribution from textural data. Biosyst. Eng. 94:133-138.
- Gee, G.W., and J.W. Bauder. 1986. Particle size analysis, hydrometer methods. p. 383-411. In: A. Klute (ed.). Method of Soil Analysis. Part 1. Physical and Mineralogical Methods. ASA and SSSA, Madison, WI, USA.
- Ghahraman, B., and A. Khoshnood Yazdi. 2012. Scaling and fractal concepts in saturated hydraulic conductivity: Comparison of some models. Iran Agric. Res. 31(1):1-15.
- Ghanbarian-Alavijeh, B., and H. Millán. 2009. The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma. 151(3):224-232.
- Gunal, H., S. Ersahin, B.Y. Uz, M. Budak, and N. Acir. 2011. Soil particle size distribution and solid fractal dimension as influenced by Pretreatments. Tarim Bilim. Derg. 17:217‐229.
- Huang, G., and R. Zhang. 2005. Evaluation of soil water retention curve with the pore-solid fractal model. Geoderma. 127:52-61.
- Hunt, A.G., B. Ghanbarian, and K.C. Saville. 2013. Unsaturated hydraulic conductivity modeling for porous media with two fractal regimes. Geoderma. 207:268-278.
- Hwang, S.I., and S.P. Hong. 2006. Estimating relative hydraulic conductivity from lognormally distributed particle-size data. Geoderma. 133:421-430.
- Jamieson, P.D., J.R. Porter, and D.R. Wilson. 1991. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res. 27:337-350.
- Khormali, F., and A. Abtahi. 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Miner. 38:511-527.
- Kravchenko, A., and R. Zhang. 1998. Estimating the soil water retention from particle-size distribution: A fractal approach. Soil Sci. 163(3):171-179.
- Li, K., H. Yang, X. Han, L. Xue, Y. Lv, J. Li, Z. Fu, C. Li, W. Shen, H. Guo, and Y. Zhang. 2018. Fractal features of soil particle size distributions and their potential as an indicator of Robinia pseudoacacia invasion. Sci. Rep. 8(7075):1-13.
- Liu, X., G. Zhang, G.C. Heathman, Y. Wang, and C. Huang. 2009. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma. 154: 123-130.
- Loeppert, R.H., and D.L. Suarez. 1996. Carbonate and gypsum. p. 437-474. In: D.L. Sparks et al. (eds.). Methods of Soil Analysis. Part 3. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI, USA.
- Momtaz, H.R., A.A. Jafarzadeh, H. Torabi, S. Oustan, A. Samadi, N. Davatgar, and R.J. Gilkes, 2009. An assessment of the variation in soil properties within and between landform in the Amol region, Iran. Geoderma. 149(1):10-18.
- Moosavi, A.A., and A.R. Sepaskhah. 2013. Sorptive number prediction of highly calcareous soils at different applied tensions using regression models. Plant Know. J. 2(2), 62-68.
- Ostovari, Y., A.A. Moosavi, and H.R. Pourghasemi. 2020. Soil loss tolerance in calcareous soils of a semiarid region: evaluation, prediction, and influential parameters. Land Degrad. Dev. 1-12.
- Pirmoradian, N., A.R. Sepaskhah, and M. Hajabbasi. 2005. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosyst. Eng. 90(2):227-234.
- Razali, N.M. and Y.B. Wah. 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2(1):21-33.
- Rieu, M., and G. Sposito. 1991. Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Sci. Soc. Am. J. 55(5):1231-1238.
- Sepaskhah, A., S. Moosavi, and L. Boersma. 2000. Evaluation of fractal dimensions for analysis of aggregate stability. Iran Agric. Res. 19(2):99-114.
- Sepaskhah, A.R., and A. Tafteh. 2013. Pedotransfer function for estimation of soil-specific surface area using soil fractal dimension of improved particle-size distribution. Arch. Agron. Soil Sci. 59(1):93-103.
- Shirazi, M.A., and L. Boersma. 1984. A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J. 48:142-147.
- Skaggs, T.H., L.M. Arya, P.J. Shouse, and B.P. Mohanty 2001. Estimating particle-size distribution from limited soil texture data. Soil Sci. Soc. Am. J. 65:1038-1044.
- Soil Survey Staff. 2014. Keys to Soil Taxonomy (12th Ed). USDA-NRCS, Washington, DC.
- Tyler, S.W., and S.W. Wheatcraft. 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci. Soc. Am. J. 56(2):362-369.
- Wang, J., W.W. Tsang, and G. Marsaglia. 2003. Evaluating Kolmogorov's distribution. J. Stat. Softw. 8(18):1-4.
- Wilding, L.P. 1985. Spatial variability: its documentation, accommodation and implication to soil surveys. p. 166-194. In: Soil Spatial Variability. Workshop.
- Xu, G., Z. Li, and P. Li. 2013. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena. 101:17-23.
- Xu, Y. 2004. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution. Comput. Geotech. 31(7):549-557.
- Xu, Y., and P. Dong. 2004. Fractal approach to hydraulic properties in unsaturated porous media. Chaos Solitons Fractals. 19(2):327-337.
- Zhou, A., Y. Fan, W. Cheng, and J. Zhang. 2019. A fractal model to interpret porosity dependent hydraulic properties for unsaturated soils. Adv. Civ. Eng. 2019:1-13.
|