- اعتمادیان، م.، حسنی، ا.، نورزداه حداد، م.، حنیفهئی، م. 1396. تأثیر کاربرد اسیدهای آلی و معدنی بر آزادسازی عناصر غذایی در خاکهای آهکی.نشریه پژوهشهای حفاظت آب و خاک. 24(5): 73-91.
- حسنی، ا.، اعتمادیان، م.، نورزداه حداد، م.، حنیفهئی، م. 1397. تأثیر کاربرد برخی اسیدهای آلی بر ویژگیهای رشدی و غلظت عناصر غذایی ذرت علوفهای. آب و خاک. 32(5): 547-558.
- رسولی صدقیانی، م.ح.، درهقایدی، ب.، خداوردیلو، ح.، مرادی، ن. 1394. تاثیر اسیدهای آلی بر جذب و تثبیت آهن در خاکهای آهکی و اسیدی. نشریه مدیریت خاک و تولید پایدار. 5(1): 215- 228.
- Adeleke, R., C. Nwangburuka and B. Oboirien, 2017. Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 108: 393-406.
- Agnello, A. C., D. Huguenot, E. D. Hullebusch and G. Esposito. 2016. Citric acid- and Tween 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environmental Science and Pollution Research. 334: 151-159.
- Badri, D. V., J. M. Chaparro, R. F. Zhang, Q. R. Shen, and J. M. Vivanco. 2013. Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome. Journal of Biological Chemistry.288: 4502–4512.
- Bowsher, A. W., R. Ali, S. A. Harding, C. J. Tsai and L. A. Donovan. 2016. Evolutionary divergences in root exudate composition among ecologically-contrasting helianthus species. Plos one. 11(1): 0148280.
- Chen, L., S. L. Luo, X. J. Li, Y. Wan, J. L. Chen, and C. B. Liu. 2014. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry.68: 300–308.
- Chen, Y. L., Y. Q. Guo, Sh. J. Han, C. J. Zou, Y. M. Zhou and G. L. Cheng. 2002. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil. Journal of Forest Research. 13(2): 115-118.
- Chen, Y. X., Q. Lin, Y. M. Luo, Y. F. He, S. J. Zhen, Y. L. Yu, G. M. Tian and M. H. Wong 2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere. 50: 807-811.
- Chen, Z., F. Liu, T. Bu, Y. Liu and J. Zhu. 2016. Effects of organic acids on dissolution of Fe and Mn from weathering coal gangue. Geochimica et Cosmochimica Acta. 35(3): 316–328.
- Clarholm, M., U. Skyllberg, A. and Rosling. 2015. Organic acid induced release of nutrients from metal-stabilized soil organic matter -The unbutton model. Soil Biology and Biochemistry. 84: 168-176.
- Dakora, F. D., and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (pp. 201-213). Springer, Dordrecht.
- Degryse, F., V. K. Verma and E. Smolders. 2008. Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin buffered solutions and in soil. Plant and Soil. 306: 69–84.
- Duarte, B., J. Freitas and I. Cacador 2011. The role of organic acids in assisted phytoremediation processes of salt marsh sediments. Hydrobiologia. 764:169-177.
- Fujii, K., M. Aoki and K. Kitayama. 2012. Biodegradation of low molecular weight organic acids in rhizosphere from a tropical montane rain forest. Soil Biology and Biochemistry. 47: 142-148.
- Jones D. L. 1998. Organic acids in the rhizosphere – A critical review, Plant and Soil Journal. 205: 25-44.
- Jones, D. L. 2001. Function and mechanism of organic anion Exudation from plant roots. Plant Physiology and Plant Molecular Biology. 52: 527-560.
- Jones, D. L. and Darrah, P. R. 1994. Role of root derived organic-acid in the mobilization of nutrient from the rhizosphere. Plant and Soil. 166: 247-257.
- Khademi, Z., D. L. Jones M. J. Malakouti Asadi F. and Ardebili, M. 2009. Organic acid mediated nutrient extraction efficiency in three calcareous soils. Australian Journal of Soil Research. 47: 213-220.
- Kumar, V., M. Kumar, N. Shrivastava, S. Sandeep Bisht, S. Sharma and A. Ajit Varma. 2016. Interaction among rhizospheric microbes, soil, and plant roots: Influence on micronutrient uptake and bioavailability. Springer International Publishing Switzerland. K.R. Hakeem, M.S. Akhtar (eds.), Plant, Soil and Microbes. pp: 169-185.
- Ling, N., W. Raza, J. H. Ma, Q.W. Huang and Q.R. Shen. 2011. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. European Journal of Soil Biology.47: 374–379.
- Ma, Y., R. S. Oliveira, H. Freitas and C. Zhang. 2016. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in Plant Science. 7: 918.
- Marschner, H. 1995. Mineral Nutrition of Higher Plants. (2nd ed.). Academic Press, London.
- Martin, B. C., S. J. George, C. A. Price, S. Shahsavari, A. S. Ball, M. Tibbett and M. H. Ryan. 2016. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms. Soil. 2: 487–498.
- Millaleo, R., M. Reyes-Díaz, A.G. Ivanov, M. L. Mora and M. Alberdi. 2010. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition. 10(4): 476 – 494.
- Moradi, N., M.H. Rasouli-Sadaghiani, E. Sepehr, B. Abdolahi Mandoulakani. 2012. Effects of low-molecular-weight organic acids on phosphorus sorption characteristics in some calcareous soils. Turkish Journal of Agriculture and Forestry. 36: 459-468.
- Muhammad, D., F. Chen, J. Zhao, G. Zhang and F. Wu. 2009. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. International Journal of Phytoremediation. 11: 558-574.
- Najafi, S. and M. Jalali, 2015. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils. Environmental Monitoring and Assessment. 187: 585-595.
- Nascimento, C. W. A., Amarasiriwardena D. and B. Xing, 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution. 140: 114-123.
- Oburger, E, G. J. D. Kirk, W. W. Wenzel, M. Puschenreiter and D. L. Jones. 2009. Interactive effects of organic acids in the rhizosphere. Soil Biology and Biochemistry. 41(3): 449–457.
- Palomo, L., N. Classen and D. L. Jones. 2006. Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biology and Biochemistry. 38: 683-692.
- Piri, M., E. Sepehr, and Z. Rengel, Z. 2019. Citric acid decreased and humic acid increased Zn sorption in soils. Geoderma, 341: 39-45.
- Qin, F., X. Q. Shan and B. Wei. 2004. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere. 57: 253–263.
- Rajkumar, M., S. Sandhya, M. N. V. Prasad and H. Freitas. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology. 30: 1562–1574.
- Rengel, Z. 2015. Availability of Mn, Zn and Fe in the rhizosphere. Journal of soil science and plant nutrition. Journal of Soil Science and Plant Nutrition. 15(2): 397-409.
- Samuels, A. L., M. Fernando and A. D. Glass. 1992. Immunoflorescent localization of plasma membrane H+-ATPase in barley roots and effects of K nutrition. Plant Physiology. 99: 1509-1514.
- Sanchez-Rodríguez, A. R., M. C. Del Campillo, J. Torrent and D. L. Jones. 2014. Organic acids alleviate iron chlorosis in chickpea grown on two p-fertilized soils. Journal of Soil Science and Plant Nutrition. 14(2): 292-303.
- Sandnes, A., D. E. Toril, and W. Gro. 2005. Organic acids in root exudates and soil solution of Norway spruce and silver birch. . Soil Biology and Biochemistry. 37: 259–269.
- Song, J., D. Markewitz, Y. Liu, X. Liu and X. Cui. 2016. The Alleviation of Nutrient Deficiency Symptoms in Changbai Larch (Larix olgensis) Seedlings by the Application of Exogenous Organic Acids. Forests. 7(10): 1-15.
- Strobel, W. 2001. Influence of vegetation on low molecular-weight carboxylic acids in soil solution. A review. Geoderma. 99: 169-198.
- Strom, L., A. G. Owenb, D. L. Godboldb and D. L. Jonesb, 2005. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biology and Biochemistry. 37: 2046–2054.
- Van Hees, P. A. W., Johansson, E. and D. L. Jones. 2008. Dynamics of simple carbon compounds in two forest soils as revealed by soil solution concentrations and biodegradation kinetics. Plant and Soil. 310:11–23.
- Vesely, T., P. Tlustos and J. Szakova, 2011. Organic salts enhanced soil risk elements leaching and bioaccumulation in Pistia stratiotes. Plant, Soil and Environment. 57(4): 166–172.
- Wu, L. H., Y. M., Luo, P. Christie and M. H. Wong. 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere. 50: 819–822.
- Wuana, R.A., F. E. Okieimen and J. A. Imborvungu. 2010. Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science and Technology. 7(3): 485–496.
|