1دانشجوی دکتری گروه علوم و مهندسی خاک دانشکده کشاورزی ، دانشگاه شهرکرد
2استاد گروه علوم و مهندسی خاک دانشکده کشاورزی، دانشگاه شهرکرد
3استادگروه علوم و مهندسی خاک دانشکده کشاورزی، دانشگاه رفسنجان
4دانشیار دانشکده مهندسی معدن، ژئوفیزیک و نفت ، دانشگاه صنعتی شاهرود
5استادیار گروه علوم و مهندسی خاک دانشکده کشاورزی، دانشگاه شهرکرد
6استاد دانشگاه تربیت مدرس
چکیده
هدایت هیدرولیکی اشباع خاک یکی از مهمترین خصوصیات هیدرولیکی خاک است که بر حرکت آب در خاک مؤثر میباشد. هدف از این پژوهش برآورد مهمترین پارامترها در پیشبینی و مدلسازی هدایت هیدرولیکی اشباع به وسیله خصوصیات زودیافت خاک، و با استفاده از درخت تصمیمگیری و تخمینگر خطا Cross Validation و Re substitution بود.دراین پژوهش، 72 نمونه خاک از شش بافت مختلف از روستای مرغملک و شهرستان شهرکرد گردآوری شد. خصوصیات زودیافت خاک در چهار سناریو (سناریو اول:pH ، EC، درصد شن و رس، ماده آلی، کربنات کلسیم، میانگین وزنی قطر خاکدانه خشک و مرطوب، جرم مخصوص ظاهری و رطوبت اشباع، سناریو دوم: کربنات کلسیم، ماده آلی، درصد شن و رس، جرم مخصوص ظاهری، درصد سنگریزه، مقاومت الکتریکی، ثابت دیالکتریک، مقاومت نفوذ به ریشه، سناریو سوم:pH ،EC، میانگین هندسی قطر ذرات، انحراف معیار هندسی قطر ذرات، ماده آلی، کربنات کلسیم، میانگین وزنی قطر خاکدانه خشک و مرطوب، جرم مخصوص ظاهری و رطوبت اشباع و سناریو چهارم: کربنات کلسیم، ماده آلی، میانگین هندسی قطر ذرات، انحراف معیار هندسی قطر ذرات، جرم مخصوص ظاهری، درصد سنگریزه، مقاومت الکتریکی، ثابت دیالکتریک، مقاومت نفوذ به ریشه) به نرمافزار معرفی شدند. هدایت هیدرولیکی اشباع نمونهها با استفاده از تک رینگ اندازهگیری شد. نتایج حاصل نشان داد که رطوبت و پس از آن ویژگیهای ساختمانی مانند انحراف معیار هندسی قطر ذرات در سناریوی اول، ماده آلی، جرم مخصوص ظاهری در سناریوی دوم، جرم مخصوص ظاهری و پایداری خاکدانه در سناریوی سوم و ماده آلی و جرم مخصوص ظاهری در سناریوی چهارم مهمترین پارامترهای اثرگذار بر هدایت هیدرولیکی اشباع میباشند. همبستگی میان دادههای پیشبینیشده با درخت تصمیمگیری و دادههای اندازهگیری شده در سناریوی دوم و چهارم 83/0 و 82/0 و در سناریو اول و سوم 79/0 بهدست آمد. با توجه به میزان خطا و %RMSE هر چهار سناریو در مدلسازی موفق بودهاند. اما %RMSE در سناریو دوم وچهارم کمتر و ضریب همبستگی بیشتر از دو سناریوی دیگر بوده است. مقدار RMSE نیز در چهار سناریو به ترتیب 79/0، 83/0، 79/0 و 82/0 بود.
Soil saturated hydraulic conductivity is one of the most important physical characteristics of soils that affects water movement in soil. . The aim of this study was to determine the most important parameters in prediction and modeling of saturated hydraulic conductivity from conveniently available parameters, using the decision tree and error estimator cross validation and re- substitution. In this study, 72 soil samples with six different textures were collected from the village of Morgmalek and Shahrekord District. Conveniently available soil properties were introduced into software in 4 scenarios (the first scenario: pH, EC, % sand, % clay, OM%, CaCO3, mean weight diameter of dry aggregate (MWD dry), mean weight diameter of wet aggregate (MWD wet), BD; the second scenario: CaCO3 , OM%, % sand, % clay, BD, % gravel, electrical resistivity, dielectric constant, root penetration resistivity; the third scenario: pH, EC, Geometric mean diameter )dg(, Geometric standard deviation )σg(, OM%, CaCO3, mean weight diameter of dry aggregate (MWD dry), mean weight diameter of wet aggregate (MWD wet), BD; and the fourth scenario: CaCO3, OM%, dg, σg BD, % gravel, electrical resistivity, dielectric constant, root penetration resistivity). Saturated hydraulic conductivity was measured with single ring. The results showed that moisture followed by structural features such as (σg) in the first scenario, and OM and BD in the second scenario, BD and MWD in the third scenario, and OM and BD in the fourth scenario were the most important parameter affecting saturated hydraulic conductivity. Correlation between predicted data by decision tree and measured data in the second and fourth scenarios were 0.83 and 0.82, respectively, and 0.79 in the first and third scenarios. All four scenarios were successful in modeling with respect to error rate and %RMSE. However, the %RMSE in the second and fourth scenarios was lower and the correlation coefficient was higher than the other two scenarios. The RMSE values in the four scenarios were 0.79, 0.83, 0.79, and 0.82, respectively.
جورابیان، م.، هوشمند، ر. 1383. منطق فازی و شبکههای عصبی مصنوعی، مفاهیم و برنامههای کاربردی. صفحه 300.
حق وردی، ا.، قهرمان، ب.، جلینی، م.، خشنودیزدی، ع. ا. عربی، ز. مقایسه روش های مختلف هوش مصنوعی در مدل سازی منحنی مشخصه رطوبتی خاک. 1390. مجله پژوهش های حفاظت آب و خاک. 18(2): 65-84
خاشعی سیوکی، ع.، جلالی موخر، و.، نوفرستی، ع. م. و رمضانی، ی. 1393. ارزیابی روش غیرپارامتریک – نزدیک ترین همسایه و سیستم های شبکه عصبی مصنوعی برای برآورد هدایت هیدرولیکی اشباع خاک. نشریه مدیریت خاک و تولید پایدار. 5 (3) : 95-81.
دهقانی بانیانی، س. قربانی دشتکی، ش. محمدی، ج. خداوردیلو، ح. خلیل مقدم، ب. 1390. مقایسه کارآیی رگرسیون خطی چندگانه و رگرسیون درختی در برآورد هدایت آبی اشباع و پارامتر عکس طول درشت موئینگی خاک. نشریه پژوهش آب ایران. شماره 9. 193-204.
شیرانی، ح. 1396. شبکههای عصبی مصنوعی با رویکرد کاربرد در علوم کشاورزی و منابع طبیعی. انتشارات دانشگاه ولی عصر رفسنجان. صفحه 127.
شیرانی، ح.، و رفیعنژاد، ن. 1391. تخمینی از برخی خصوصیات خاک از دست رفته با عملکردهای رگرسیون و شبکه عصبی در کرمان. مجله تحقیقات خاک. 25(4): 349-359
فرزادمهر، م.، دستورانی، م.، خاشعکی سیوکی، ع. 1397. مقایسه مدلهای درخت تصمیم و یادگیری برپایه نمونه در برآورد هدایت هیدرولیکی اشباع خاک. نشریه پژوهشهای حفاظت آب و خاک. 25(5): 167-184.
مهدیان، م.ح. 1384. هدایت هیدرولیکی خاکها و نحوه کاربرد آن در طراحی شبکه های زهکشی. مجله تحقیقات مهندسی کشاورزی. 6 (23): 159-170.
نصرتی کاریزک، ف.، موحدی نائینی، ع.، هزارجریبی، ل.، روشنی، ق.ع. و دهقانی، ا.ا. 1391. استفاده از شبکههای عصبی مصنوعی برای برآورد هدایت هیدرولیکی اشباع از ویژگیهای زودیافت خاک. مجله مدیریت خاک و تولید پایدار. 2 (1): 110-95.
Bouwer H. 1986. Intake rate. Cylinder infiltrometer. In: Klute A. (Eds), Methods of soil analysis. Part 1. America Society of Agronomy, Soil Science Society of America, Madison, Wisconsin USA. pp. 825-843.
Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54: 464-465.
Cateni, S., Colla, V., and Vannucci, M. 2008. Outlier detection methods for industrial application methods for industrial applications. In: Aramburo, A. and Ramirez Trevino, A. (eds), Advances in Robotics, Automation and Cnotrol. (265-282). In Tech, Vienna, Austria.
Cosby, B.J., G.M. Hornberger, R.B. Clapp and T.R. Ginn. 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20: 682–690.
Hengle, T. and Husnjak, S. 2006. Evaluation adequacy and usability of soil maps in Croatia. Soil Science Society of America Journal, 70:920-929.
Jabro, J.D. 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Transactions of the ASAE, 35: 2. 557-560.
Kao, C.S. and J.R. Hunt. 1996. Prediction of wetting front movement during one-dimentional infiltration into soils. Water Resour Res. 9(2): 384–395.
Kemper, W. D. and roseNau, rC. 1986. aggregate stability and size distribution. In Sparks D.L. (Ed.) Methods of soil analysis. american society of agronomy, Madison. pp: 425-442.
Khamis, A., Ismail, Z., Haron, Kh., and Tarmizi Mohammad, A. 2005. The effects of outlier data on neural network performance. J. Appl. Sci. 5: 8. 1394-1398.
Klute A. and Dirksen C. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute(eds). Method of soil analysis, Part1: Agronomy Soil Science Society of America Madison.W.I. 687-734.
Kurt, I., Ture, M., and Kurum, A.T. 2008. Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert System Applied, 34(1): 366–374.
Leij, F., M.G. Schaap and L.M. Arya. 2002. Water retention and storage: Indirect methods. PP. 1009–1045. In: J.H. Dane and G.C.
Topp (Ed.), Methods of Soil Analysis. Part 4. SSSA Book Ser. No. 5. SSSA, Madison, W
Mallant, D., Mohanty, B.P., Vervoort, A., and Feyen, J. 1997. Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology. 10: 115-131.
Minasny, B., J. Hopman, W.T. Harter, S.O. Eching, A. Toli and M.A. Denton. 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Sci. Soc. Amer. J. 68: 417-429.
Moncada, M.P., Gabriels, D., and Cornelis, W.M. 2014. Data-driven analysis of soil quality indicators using limited data. Geoderma. 235: 271-278.
Page M.C. Sparks D.L. Noll M.R. and Hendricks G.J. 1987. Kinetics and mechanisms of potassium release from sandy Middle Atlantic Coastal Plain soils. J. Soil Sci. Soc. Am. 51: 1460-1465.
Rawls, W.J., T.J. Gish and D.L. Brakensiek. 1991. Estimating soil water retention from soil physical properties and characteristics. Adv. Soil Sci. 9: 213–234.
Sarunas, R. 1997. On dimensionality, sample size, and classification error of nonparametric linear classification algorithms IEEE Transactions on Pattern Analysis and Machine Intelligence, 19: 667–671.
Schaap, M.G., Leij, F.J., and Van Genuchten, M.T. 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251: 3-4. 163-176.
Sobieraj, J.A., H. Elsenbeer and R.A. Veressy. 2001. Pedotransfer functions for estimating saturated hydraulic conductivity implications for modeling stormflow generation. J. Hydrol. 251: 202–220.
Walkley A. and Black I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29-38.
Wenner, F. A Method of Measuring Earth Resistivity; Scientific Paper, Report No. 258; National Bureau of Standards; Gaithersburg, MD, USA, 1916; Volume 12, pp. 469-482.
Wosten, J.H.M., Ya.A. Pachepsky and W.J. Rawls. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251: 123–150.