1استادیار گروه مهندسی آب، مرکز آموزش عالی کاشمر، کاشمر، ایران.
2استادیار گروه مهندسی آب، مرکز آموزش عالی کاشمر، کاشمر، ایران
3استادیار گروه علوم و مهندسی آب- مرکز آموزش عالی کاشمر
4دانشیار، گروه آبخیزداری، دانشگاه بیرجند، بیرجند، ایران
چکیده
اینتحقیقبهمنظورشبیهسازیاجزایبیلانآبدرمقیاسمزرعهای،پیشبینیرطوبتدرنیمرخخاک،وهم چنینعملکرد دانهدرمزارعتحتآبیاریگندمدردشتنیشابورانجامشد. در این راستا، تعداد سه مزرعهدرنقاطمختلفدشتانتخابگردید. دادههای ورودی مدلAquaCrop شامل پارامتر های هوا،خاک، گیاه و عملیات زراعیدرهرکدامازمزارعجداگانه جمعآوریگردید و سپساطلاعاتموردنیازمدلو ویژگیهایزراعیگندمواسنجیشد. اندازه گیری رطوبت خاک مزارع از سه عمق (30-0، 60-30 و90-60) سانتی متر و در پنج نوبت در فصل زراعی انجام شد. برای ارزیابی کارآیی مدل از آمارههای متوسط خطای ریشة میانگین مربعات(RMSE)، کارآیی مدل (EF) و خطای برآورد (Pe) استفاده شد. نتایجحاصلازشبیهسازیرطوبتدرنیمرخخاکنشاندادکهمدل مزبورمقداررطوبترادرعمقهاو زمانهایمختلفبهخوبیشبیهسازیمیکند. نتایج تحقیق نشان داد که آماره های ارزیابی کارآیی مدل در مرحله واسنجی برای شبیهسازی رطوبت خاک در همه مزارع بهترتیب 032/0<RMSE<027/0، 91/0<EF<80/0 و 14<Pe<5/3 درصد بود. این مقادیر در مرحله اعتبارسنجی مدل 031/0<RMSE<025/0، 94/0<EF<82/0 و 12<Pe<7/2 درصد حاصل گردید. حداقل وحداکثر درصد خطای شبیه سازی مدل برای عملکرد دانه و کارآیی مصرف آب در همه مزارع تحت مدیریت کشاورز به ترتیب 8/8%-4% و 9%-6/4% بود. با توجه به نتایج تحقیق، مدل AquaCrop قادر است میزان رطوبت خاک، عملکرد دانه و کارآیی مصرف آب را در شرایطمشابه این مزارع با دقت قابل قبولی شبیه سازی نماید.
Simulation of Soil Moisture and Yield for Wheat Using AquaCrop Model under Field Conditions in Neyshabur Plain
نویسندگان [English]
Meysam Abedinpour1؛ hadi dehghan2؛ mahdi mokari3؛ hadi Memarian4
1Deputy Director, Department, Kashmar Higher Education Institute, Kashmar, Iran.
2Water Engineering Department, Kashmar Higher Education Institute
3Assistant Prof. Water and Science Engineering- Kashmar Higher Education Institute
4Associate Professor, Watershed Management, Birjand University, Birjand, Iran
چکیده [English]
This study was conducted to simulate water balance components at field scale, predict soil moisture profile, and grain yield in irrigated wheat fields in Neyshabur plain. In this regard, three farms were selected in different parts of the plain. AquaCrop input data including air, soil, and crop parameters were collected at each farm separately, then, the required model parameters and wheat crop data were calibrated. Root mean square error (RMSE), model efficiency (EF) and prediction error (Pe) were used to evaluate the model performance. The results of moisture simulation in soil profile showed that the model correctly simulated moisture content at different depths and times. The statistical parameters used for evaluating efficiency of the model at the calibration stage for simulating soil moisture in all farms were 0.027<RMSE<0.032, 0.80<EF<0.91, and 3.5<Pe<14%. These values at model validation stage were 0.025<RMSE<0.031, 0.82<EF<0.94, and 2.7<Pe<12%. The minimum and maximum percentages of model simulation error for grain yield and water productivity in all farms managed by the farmers were 4-8.8% and 4.6 to 9%, respectively. According to the results of the research, AquaCrop model can simulate soil moisture content, grain yield, and water productivity with acceptable accuracy under similar field conditions.
کلیدواژهها [English]
Irrigated wheat, Biomass, Water productivity
مراجع
امیری، ا.، بحرانی، ع.، خورسند، ا و حق جو، م. 1394. ارزیابی مدل AquaCrop در پیش بینی عملکرد دانه و بیوماس گندم، تحت تنش کم آبی. نشریه دانش آب و خاک، جلد 25 شماره 4 : 217 تا 229.
بهرامی، چ.، وردی نژاد، و.ر.، خورسند، ا.، بشارت، س و مجنونی هریس، ت. 1398. ارزیابی مدل AquaCrop برای شبیهسازی عملکرد کلزای بهاره و رطوبت نیمرخ خاک تحت تنشهای کم آبی. اکوفیزیولوژی گیاهی، جلد 11 شماره 36: 66-53.
خورسند، ا.، وردی نژاد، ر و شهیدی، ع. 1393. ارزیابی عملکرد مدل AquaCrop در پیش بینی عملکرد گندم، رطوبت، شوری نیمرخ خاک تحت تنش های شوری و کم آب. نشریه مدیریت آب و آبیاری، جلد4 شماره 1: 104-89.
فرج زاده اصل، م و حسینی آ. 1386. تحلیل بحران آب دشت نیشابور. فصلنامه مدرس علوم انسانی ویژه نامه جغرافیا، جلد 11: 215-236.
فرج زاده اصل، م.، ولایتی س و حسینی آ. 1384. تحلیل بحران آب در دشت نیشابور با رویکرد برنامه ریزی محیطی. کمیته تحقیقات شرکت سهامی آب منطقه ای خراسان رضوی.
عابدین پور، م. 1397. مدیریت آب در کشاورزی با مدل AquaCrop. انتشارات جهاد دانشگاهی اصفهان، اصفهان، ص 228.
علیزاده، ح.، نظری، ب.، پارسی نژاد، م.، رمضانی اعتدالی، ه و جانباز، ح. ر. 1389. ارزیابی مدل AquaCrop در مدیریت کم آبیاری گندم و جو در منطقه کرج. مجله آبیاری و زهکشی ایران، جلد 2 شماره 4: 273-283.
Abedinpour, M., A. Sarangi, T.B.S., Rajput, M. Singh and H. Pathak. 2012. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 110: 55-66.
Adeboyea, O.B., B. Schultz, K. O. Adekalua and K.C. Prasad. 2019. Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria. Agricultural Water Management, 213: 1130-1146.
AnjumIqbal, M., Y. Shena, R. Stricevic, H. Pei, H. Sun, E. Amiri, A. Penas and S. del Rio.2014. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation of field experiment to regional yield simulation. Agricultural Water Management, 135: 61-72.
Blake, G.R and K.H. Hartge. 1986. Bulk density, Pp. 363-375. In: Klute I, (Ed). Methods of Soil Analysis. Part 1 - Physical and Mineralogical Methods Second Edition. American Society of Agronomy, Madison WI.
Doorenbos, J and A. H. Kassam.1979. Yield response to water. Irrigation and Drainage Paper, No. 33. FAO: Rome, Italy.
Gee, G.W and J.W. Bouder. 1986. Particle size analysis. In: Methods of soil analysis. Pp. 383-411. In: Klute, I. (Ed). Part 1. Agron. Monoger. 9. I.S.I. Madison. WI.
Kale Celik, S., S. Madenoglu and B. Sonmez. 2018. Evaluating AquaCrop model for winter wheat under various irrigation conditions in Turkey. J. of Agri. Sciences, 24(2): 205-217.
Klute, A. 1986. Water retention- laboratory methods. Pp. 635-662. In: Klute I, (Ed). Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Klute, A and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: Methods of Soil Analysis Part 1: Physical and Mineralogical Methods, A. Klute, Ed. Soil Science Society of America, Madison, WI.
Manasah, S. M. and R.B. Paul.2012. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agricultural Water Management, 110: 16-24.
Martini, L.C. 2018. Sensitivity analysis of the AquaCrop parameters for rainfed corn in the South of Brazil. Pesq. agropec. Bras. Brasília, 53(8): 934-942.
Mousavizadeh, S.F., T. Honar and S. H. Ahmadi. 2016. Assessment of the AquaCrop model for simulating Canola under different irrigation managements in a semiarid area. International Journal of Plant Production, 10(4): 425-446.
Ritchie, J.T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8(5): 1204-1213.
Steduto, P., T.C. Hsiao, D. Raes and E. Fereres. 2009. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3): 426-437.
Toumi, J., S. Er-Raki, J. Ezzahar, S. Khabba, L. Jarlan and A. Chehbouni. 2016. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management, 163: 219-235.
Zhang, W., W. Liu, Q. Xue, H. Pei, J. Chen and X. Han. 2013. Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Science and Technology, 68(4): 821-828.