Chuanlei, Z., Shanwen, Z., Jucheng, Y., Yancui, S., & Jia, C. (2017). Apple leaf disease identification using genetic algorithm and correlation based feature selection method. International Journal of Agricultural and Biological Engineering, 10(2), 74-83.
Cruz, A., Ampatzidis, Y., Pierro, R., Materazzi, A., Panattoni, A., De Bellis, L., & Luvisi, A. (2019). Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence. Computers and Electronics in Agriculture, 157, 63-76.
Durmuş, H., Güneş, E. O., & Kırcı, M. (2017). Disease detection on the leaves of the tomato plants by using deep learning.Disease detection on the leaves of the tomato plants by using deep learning.Proceedings of the 6thInternational Conference on Agro-Geoinformatics. Aug. 7-10. Virginia, USA.
Ghasemi Varjani, Z., Mohtesabi, S. S., Ghasemi, H., & Omrani, I. (2018). Development of a new hybrid system to detect apple tree leaf diseases. Iranian Biosystems Engineering, 49(2), 215-225. (in Persian)
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. June 26 July 1. Las Vegas, NV, USA.
Hosseini, H., Mohammad Zamani, D., & Master, A. (2018). Detection System for Sefidak Poudri Fungal Disease and Anthracnose Cucumber Leaf by Image Processing Technique and Artificial Neural Network. Plant Protection (Scientific Journal of Agriculture), 40(4), 15-28. (in Persian)
Islam, M., Dinh, A., Wahid, K., & Bhowmik, P. (2017). Detection of potato diseases using image segmentation and multiclass support vector machine.Proceedings of the 30thCanadian Conference on Electrical and Computer Engineering (CCECE). April 30-May 3. Windsor, Canada.
Liu, B., Zhang, Y., He, D., & Li, Y. (2018). Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry, 10(1), 11. https://doi.org/10.3390/sym10010011.
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11-26.
Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. NucleicAcids Research, 31(13), 3812-3814.
O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv Preprint arXiv:1511.08458.
Oboudi, M. (2015). Diagnosis of cucumber mosaic virus symptoms by image processing.(M. Sc. Thesis), Isfahan University of Technology, Faculty of Agriculture, Isfahan, Iran. (in Persian)
Peyman, S. H., BakhshiPour, A., & Jaafari, A. A. (2016). Feasibility of applying digital image processing method to detect rice leaf surface diseases. Agricultural Machinery, 6(1), 69-79. (in Persian)
Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., & Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on MedicalImaging, 35(5), 1285-1298.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556.
Suryawati, E., Sustika, R., Yuwana, R. S., Subekti, A., & Pardede, H. F. (2018). Deep Structured Convolutional Neural Network for Tomato Diseases Detection.Proceedings of the International Conference on Advanced Computer Science and Information Systems (ICACSIS).Oct.27-28. Yogyakarta, Indonesia.
Suykens, J. A., & Vandewalle, J. (1999). Least squares support vectormachine classifiers. Neural Processing Letters, 9(3), 293-300.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions.Proceedings of the IEEE Conference onComputer Vision and Pattern Recognition.June 7-June 12. Boston, USA.
Wang, G., Sun, Y., & Wang, J. (2017). Automatic image-based plant disease severity estimation using deep learning. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2017/2917536.
Zhang, S., Wu, X., You, Z., & Zhang, L. (2017). Leaf image based cucumber disease recognition using sparse representation classification. Computers and Electronics in Agriculture, 134, 135-141.