Akbari, A., Rabiei, H., Hedayat, A., Mohammadpour, N., Zolfagharian, H., Teimorzadeh, S.J.a.o.r.i., 2010. Production of effective antivenin to treat cobra snake (Naja naja oxiana) envenoming. Arch Razi Inst 65, 33-37.
Binh, D., Thanh, T., Chi, P., 2010. Proteomic characterization of the thermostable toxins from Naja naja venom. J Venom Anim Toxins incl Trop Dis 16, 631-638.
Calvete, J.J., Sanz, L., Angulo, Y., Lomonte, B., Gutierrez, J.M., 2009. Venoms, venomics, antivenomics. FEBS Lett 583, 1736-1743.
Dehghani, R., Fathi, B., Shahi, M.P., Jazayeri, M., 2014. Ten years of snakebites in Iran. Toxicon 90, 291-298.
Dubovskii, P.V., Lesovoy, D.M., Dubinnyi, M.A., Konshina, A.G., Utkin, Y.N., Efremov, R.G., et al., 2005. Interaction of three-finger toxins with phospholipid membranes: comparison of S- and P-type cytotoxins. Biochem J 387, 807-815.
Dutta, S., Chanda, A., Kalita, B., Islam, T., Patra, A., Mukherjee, A.K., 2017. Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties. J Proteomics 156, 29-39.
Fatima, L., Fatah, C.J.J.o.C.T., 2014. Pathophysiological and Pharmacological Effects of Snake Venom Components: Molecular Targets. J Clin Toxicol 4, 1-9.
Georgieva, D., Seifert, J., Ohler, M., von Bergen, M., Spencer, P., Arni, R.K., et al., 2011. Pseudechis australis venomics: adaptation for a defense against microbial pathogens and recruitment of body transferrin. J Proteome Res 10, 2440-2464.
Gutierrez, J.M., Lomonte, B., Leon, G., Alape-Giron, A., Flores-Diaz, M., Sanz, L., et al., 2009. Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics 72, 165-182.
Hamilton, M.A., Russo, R.C., Thurston, R.V., 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11, 714-719.
Harvey, A.L., 2014. Toxins and drug discovery. Toxicon 92, 193-200.
Huang, H.W., Liu, B.S., Chien, K.Y., Chiang, L.C., Huang, S.Y., Sung, W.C., et al., 2015. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128, 92-104.
Kazemi-Lomedasht, F., Rahimi Jamnani, F., Behdani, M., Shahbazzadeh, D., 2019. Linear mimotope analysis of Iranian cobra (Naja oxiana) snake venom using peptide displayed phage library. Toxin Rev 38, 106-114.
Kulkeaw, K., Chaicumpa, W., Sakolvaree, Y., Tongtawe, P., Tapchaisri, P., 2007. Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon 49, 1026-1041.
Laustsen, A.H., Gutierrez, J.M., Lohse, B., Rasmussen, A.R., Fernandez, J., Milbo, C., et al., 2015. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon 99, 23-35.
Lomonte, B., Calvete, J.J., 2017. Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. J Venom Anim Toxins Incl Trop Dis 23, 26.
Malih, I., Ahmad rusmili, M.R., Tee, T.Y., Saile, R., Ghalim, N., Othman, I., 2014. Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J Proteomics 96, 240-252.
Modahl, C.M., Mackessy, S.P., 2019. Venoms of Rear-Fanged Snakes: New Proteins and Novel Activities. Front.Ecol. Evol 7.
Mukherjee, A.K., 2010. Non-covalent interaction of phospholipase A (2) (PLA (2)) and kaouthiotoxin (KTX) from venom of Naja kaouthia exhibits marked synergism to potentiate their cytotoxicity on target cells. J Venom Res 1, 37-42.
Reed, L.J., Muench, H., 1938. A Simple Method of Estimating Fifty Per Cent Endpoints12. Am J Epidemiol 27, 493-497.
Sintiprungrat, K., Watcharatanyatip, K., Senevirathne, W.D., Chaisuriya, P., Chokchaichamnankit, D., Srisomsap, C., et al., 2016. A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteomics 132, 131-143.
Suntravat, M., Cromer, W.E., Marquez, J., Galan, J.A., Zawieja, D.C., Davies, P., et al., 2019. The isolation and characterization of a new snake venom cysteine-rich secretory protein (svCRiSP) from the venom of the Southern Pacific rattlesnake and its effect on vascular permeability. Toxicon 165, 22-30.
Talebi Mehrdar, M., Hajihosseini, R., Madani, R., 2017. Identification and isolation of immunodominant proteins of Naja naja (Oxiana) snake venom %J Arch Razi Inst 72, 131-137.
Tan, K.Y., Tan, C.H., Chanhome, L., Tan, N.H., 2017. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty. Peer J 5, e3142.
Tan, K.Y., Tan, C.H., Fung, S.Y., Tan, N.H., 2015. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics 120, 105-125.
Vejayan, J., Shin Yee, L., Ponnudurai, G., Ambu, S., Ibrahim, I., 2010. Protein profile analysis of Malaysian snake venoms by two-dimensional gel electrophoresis. J Venom Anim Toxins Incl Trop Dis 16, 623-630.
Wong, K.Y., Tan, C.H., Tan, N.H., 2016. Venom and Purified Toxins of the Spectacled Cobra (Naja naja) from Pakistan: Insights into Toxicity and Antivenom Neutralization. Am J Trop Med Hyg 94, 1392-1399.
Yap, M.K.K., Fung, S.Y., Tan, K.Y., Tan, N.H., 2014. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra). Acta Tropica 133, 15-25.