Ciullo, P.A. 1997. Industrial minerals and their uses. Noyes Publications, Westwood, USA. 640p. URL: https://www.elsevier.com/books/industrial-minerals-and-their-uses/ciullo/978-0-8155-1408-4
-DIN EN standard, NO. 634, 1995. Cement-bonded Particleboards. Specifications- general requirements; German version.
-Golbabaei, F., Salehi, K. and Hajihassani, R., 2018. Use of bagasse in the manufacture of reinforced wood-fiber cement composite. Iranian Journal of Wood and Paper Science Research, 34(2): 302-311. (In Persian).
-Hassanpoortichi, A., Bazyar, B., Khademieslam, H., Rangavar, H. and Talaeipour, M., 2015. Effect of nano-wollastonite on microscopic, mechanical and physical properties of cement-wood fibers composite. Iranian Journal of Wood and Paper Science Research. 3(4): 567–577. (In Persian).
-Hassanpoortichi, A., Bazyar, B., Khademieslam, H., Rangavar, H. and Talaeipour, M., 2019. Is Wollastonite Capable of Improving the Properties of Wood Fiber-cement Composite? BioResources Journal, 14(3): 6168-6178.
-Haghighi Poshtiri, A., Taghiyari, H. R., and Karimi, A. N. (2013). “The optimum level of nano-wollastonite consumption as fire -retardant in poplar wood (Populus nigra),” Int. J. Nano Dimension 4(2), 141-151.
-Hosseinkhani, H., 2014. Gypsum bounded board production reinfoced with Date Palm (Phoenix dactylifera L.) pruning residues fibers. Iranian Journal of Wood and Paper Science Research. 30(1): 60–71. (In Persian).
-Karade, S.R., 2010. Cement-bonded composites from
lignocellulosic wastes. Construction and building materials, 24(8): 1323-1330.
-Kamyab, M., and Nazerian, M., 2015. Gypsum-bonded particleboard manufactured from agricultural based material. Forest Science and Practice, 69 (2): 419-432. (In Persian).
-Li, H., Xiao, H. and Ou, J., 2004. A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 34(3): 435-438.
-Nazerian, M., Kamyab, M. and Kermaniyan, H., 2016. Application effect of mineral fibers on hydration and properties of gypsum-bonded fiberboard manufactured from kenaf and bagasse fibers. Journal of Wood & Forest Science and Technology, 23 (2): 203-228. (In Persian).
-Nasiri, H., Varshoee, A. and Kargarfard, A., 2011. Investigation on the properties of cement-bagasse fiber composite as a structural material, Iranian journal of Wood and Paper Science Research (IJWPR) Article 7, Volume 26, Issue 2 - Serial Number 35, Spring 2011, Page 291-299. (In Persian).
-Rangavar, H., Kargarfard, A. and Hoseiny Fard, M.S., 2016 a. Investigation on Effect of cement types on the cement hydration and properties of wood-cement composites manufactured using sunflower stalk (Helianthus Annuus). Iranian Journal of Wood and Paper Science Research, 31 (2), 336 – 348. (In Persian)
-Rangavar, H., Nourbakhsh, A. and Haji Hatamlo, S., 2016 b. The effect of nano-wollastonite on physical and mechanical properties of wood plastic composites made with sunflower stem waste and alder wood. Iranian Journal of Wood and Paper Science Research, 31(4):684-694. (In Persian)
-Rowell, P.M., Youngquist, J.A. and Mcnatt, D., 1991. Agricultural fibers in composition panels. In Proceedings of the 27th International Particleboard Composite Materials Symposium.USA, 9-11 April:
-Taghiyari, H. R., Mobini, K., Sarvari Samadi, Y., Doosti, Z., Karimi, F., Asghari, M., Jahangiri, A. and Nouri, P., 2013. Effects of nano-wollastonite on thermal conductivity coefficient of medium-density fiberboard. Journal of Nanomaterials & Molecular Nanotechnology. 2(1): 1-5.
-Taghiyari, H. R., Ghorbanali, M. and Tahir, P. M. D., 2014. Effects of the improvement in thermal conductivity coefficient by nano-wollastonite on physical and mechanical properties in medium-density fiberboard (MDF), BioResources 9(3), 4138-4149.