احمدی, مهدی, قرمز چشمه, باقر. (1399). ارزیابی خطا و عدم قطعیت در ریزمقیاس گردانی SDSM و شبکه عصبی مصنوعی (برخی از ایستگاههای شمالی کشور). سامانه مدیریت نشریات علمی, 12(1), 340-350. doi: 10.22092/ijwmse.2019.108294.1226
مهدی احمدی; باقر قرمز چشمه. "ارزیابی خطا و عدم قطعیت در ریزمقیاس گردانی SDSM و شبکه عصبی مصنوعی (برخی از ایستگاههای شمالی کشور)". سامانه مدیریت نشریات علمی, 12, 1, 1399, 340-350. doi: 10.22092/ijwmse.2019.108294.1226
احمدی, مهدی, قرمز چشمه, باقر. (1399). 'ارزیابی خطا و عدم قطعیت در ریزمقیاس گردانی SDSM و شبکه عصبی مصنوعی (برخی از ایستگاههای شمالی کشور)', سامانه مدیریت نشریات علمی, 12(1), pp. 340-350. doi: 10.22092/ijwmse.2019.108294.1226
احمدی, مهدی, قرمز چشمه, باقر. ارزیابی خطا و عدم قطعیت در ریزمقیاس گردانی SDSM و شبکه عصبی مصنوعی (برخی از ایستگاههای شمالی کشور). سامانه مدیریت نشریات علمی, 1399; 12(1): 340-350. doi: 10.22092/ijwmse.2019.108294.1226
ارزیابی خطا و عدم قطعیت در ریزمقیاس گردانی SDSM و شبکه عصبی مصنوعی (برخی از ایستگاههای شمالی کشور)
1دانشجوی دکتری گروه جنگل، مرتع و آبخیزداری، دانش منابع طبیعی محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
2استادیار، پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
چکیده
در دهههای گذشته در نتیجه فعالیتهای انسانی و طبیعی، میزان گازهای گلخانهای در اتمسفر افزایش یافته و در نتیجه، دمای کره زمین روند افزایشی به خود گرفته است. برای مدیریت منابع آب، کشاورزی و در نتیجه ایجاد امنیت غذایی نیاز به آگاهی از وضعیت اقلیمی دوره آتی است که در حال حاضر معتبرترین ابزار برای تولید سناریوهای اقلیمی، مدلهای سه بعدی جفت شده اقیانوس-اتمسفر گردش عمومی جو است. برای استفاده از این دادهها لازم است بهوسیله تکنیکهای مختلف در سطوح ایستگاهی ریزمقیاس گردانی شوند. مدلهای مختلفی در جهت ریزمقیاس گردانی وجود دارد که هر یک دارای معایب و مزایایی هستند. هدف از انجام مطالعه، مقایسه دو روش خطی و غیرخطی ریزمقیاس گردانی است. در روش خطی، از مدل SDSM و در روش غیرخطی به کمک برنامهنویسی در نرمافزار متلب انجام پذیرفت. برای بررسی خطا از میانگین خطا ماهانه و سالانه و برای مقادیر حدی از واریانس و برای بررسی عدم قطعیت از آزمون منویتنی در سطح 95 درصد استفاده شد. نتایج نشان داد که در بررسی میانگین ماهانه بهترتیب در ایستگاه قائمشهر، بابلسر، قرآن طالار و بندپی در مدل SDSM بهترتیب 0.75، 12، 11 و هفت، در مدل شبکه عصبی مصنوعی سه، دو، 26 و چهار و در میانگین سالانه بهترتیب نه، 146، 141 و 87 در مدل SDSM و در مدل شبکه عصبی مصنوعی 45، 32، 321، 48 میلیمتر خطا (افزایشی و کاهشی) وجود دارد. نتایج عدم قطعیت در ایستگاههای قائمشهر، بابلسر، قرآن طالار و بندپی برای 12 ماه هر ایستگاه در مدل SDSM بهترتیب هشت، سه، شش و چهار و در شبکه عصبی مصنوعی بهترتیب چهار، دو، دو و سه پذیرفته شد. در مطالعات تغییر اقلیم بر رواناب و عدم قطعیت و زمانی که داده کم وجود دارد، باید از مدل SDSM و در زمانی که بررسی سیلاب و برآورد جریان کمینه و بیشینه هدف مطالعه است، بهتر است، از مدل شبکه عصبی مصنوعی استفاده کرد.
Evaluation of error and uncertainty in downscaling SDSM and ANN
نویسندگان [English]
Mehdi Ahmadi1؛ Bagher Ghermezcheshmeh2
1PhD student, Department of Forest, Range and Watershed Management, Faculty Natural Recourses and Environmental, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Assistant Professor, Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]
In the last decades, greenhouse gases in atmosphere have increased as a result of natural and human activities and thus, earth temperature has increased. Rising global temperature, in turn, leads to significant changes in related fields, especially water resources and agriculture. So, investigating and modeling climate changes can be considered as a very important factor in water resources management planning. Different studies have been done in the field of climate change issues in the world, but, at the moment, AOGCM model is the most reliable tool to generate climate scenarios. It is necessary to downscale AOGCM data using different techniques in station scale and compare linear and nonlinear downscaling models. In liner method SDSM and in nonlinear method ANN programming were used in MATLAB. For investigating the amount of error, mean biomass monthly and annual and for extreme data, variance and for analyzing uncertainty Man-Witney test were used in 95 percent level. Results showed the amount of mean monthly errors are 0.75, 12, 11 and 7 mm in Ghaemshahr, Babolsar, Ghoran Talar and Bandpey in SDSM model and 3, 2, 26 and 4 mm in ANN model and the amount of mean annual errors are 9, 146, 141 and 87 mm in SDSM model and 45, 32, 321 and 48 mm in ANN model (increased or decreased), respectively. Examining the performance of variance showed that ANN model was somewhat better than SDSM model. Also, results of uncertainty for 12 months in Ghaemshar, Babolsar, Quran Talar and Bandpey stations showed 8, 3, 6 and 4 in SDSM model and 4, 2, 2 and 3 in ANN model, respectively. In general, this study showed that in studies on climate change effects on runoff, uncertainty, and when limited data are available, SDSM model should be used and when the aim is investigating the flood and its minimum and maximum estimation, it is better to use ANN model.
Abebe, A. and A .Kebede. Assessment of climate impacts on the water resources of Megech River Catchment, Abbay Basin, Ethiopia. Open Journal of Modern Hydrology, 20177: 141-152.
Ahmadi, M. 2014. Analyzing impact of climate change on annual discharge in Qorantalar Watershed, MSc Thesis, University of Kashan, 120 page (in Persian).
Ahmadi, M., H. Ghasemiye and B. Ghermezcheshmeh. 2014a. The effect of climate change on the annual discharge catchment area Quran TALAR. 2nd National Conference on Water Crisis, University of Shahrekord, 8 pages (in Persian).
Ahmadi, M., H. Ghasemiye and B. Ghermezcheshmeh. 2014b. Evaluation of down scaling statistical in rainfall-runoff models. 2nd National Conference on Water Crisis, University of Shahrekord, 8 pages (in Persian).
Ahmadi, M., H. Ghasemiye and B. Ghermezcheshmeh. 2014c. Analyzing downscaling statistical annual and monthly in SDSM. 2nd National Conference on Water Crisis, University of Shahrekord, 8 pages (in Persian).
Rasuli, A., A. Rezaei, A. Massah and B. Ghermezcheshmeh. 2014. Investigation impact of morpho-climate parameters on accuracy of LARS-WG model, Iran. Watershed Management Science and Engineering, 8(24): 14-23 (in Persian).
Ghermezchezchmeh, B., A. Rasuli and A. Khiorshidost. 2013. Uncertainty analyzing of neural network in downscaling of Hadcm3 data with bootstrap confidence interval method. Watershed Engineering and Management, 7(2015): 12-31 (in Persian).
Dibike, B.Y. and P. Coulibaly. 2006. Temporal neural network for downscaling variability extremes. Neural Networks, 19: 135-144.
Dibike, Y.B., P. Gachon, A. St-hilaire, T.B. Quarda and V. Ngu Yen. 2007. Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada. Theoretical and Applied Climatology, 91: 149-170.
Ghermezcheshmeh, B. 2012. AOGCM uncertainty assessment of downscaled models by analyzing temperature and precipitation elements, case study: Orumiyeh Lake Basin. University of Tabriz, 192 pages (in Persian).
IPCC-TGCIA. 1999. Guidelines on the use of scenario data for climate impact and adaptation assessment. Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment, 69 pages.
2001. Climate Change 2001. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 572 pages.
Hashemi, M.Z., A.Y. Shamsedin and B.W. Melville. 2009. Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stochastic Environmental Research and Risk Assessment, 25: 475–484.
Kamali, A. and A. Masaeboani. 2011. AOGCM-AP4 uncertainty assessment models and hydrologic models to estimate the effects of climate change temperature and precipitation and runoff. Iran Water Research Journal, 2: 12-22 (in Persian).
Kamali, A. 2010. Assess the impact of climate change on runoff under the impact of uncertainty AOGCM-AP4 models and small-scale methods of case study Gharesoo Basin. MSc University of Tehran, 95 pages (in Persian).
Kamali, A. and A. Masaeboani. 2012. The impact of climate fluctuations on runoff with the involvement of uncertainty hydrological models. Journal of Soil and Water, 5: 920-931 (in Persian).
Kia, M. 2012. Neural network in MATLAB. Qian Academic Publishing, 400 pages (in Persian).
H., A. Shamisi, A. Assi and A. Hejase. 2011. Using MATLAB to develop artificial neural network models for predicting global solar radiation in Al Ain City, UAE. Engineering Education and Research Using MATLAB, 11: 220-238
Mashaeboani, A. and S. Morid. 2005. The effects of climate change on Zayandeh Rood Esfahan. Journal of Science and Technology of Agriculture and Natural Resources, 4: 17-27 (in Persian).
Vaseghi, R. 2010. The effect of AOGCM outputs of runoff Gharesoo. MSc Thesis, Islamic Azad University, Sciences and Researched Branch, Tehran, 100 pages (in Persian).