Bernatek-Jakiel A, Kacprzak A, Stolarczyk M. 2016. Impact of soil characteristics on piping activity in a mountainous area under a temperate climate (Bieszczady Mts., Eastern Carpathians). Catena. 141 (0341–8162): 117–129.
Bernatek-Jakiel A, Wrońska-Wałach D. 2018. Impact of piping on gully development in mid-altitude mountains under a temperate climate: A dendrogeomorphological approach. Catena. 165 (0341–8162): 320–332.
Castillo C, Taguas EV, Zarco‐Tejada P, James MR, Gómez JA. 2014. The normalized topographic method: an automated procedure for gully mapping using GIS. Earth Surface Processes and Landforms. 39(15): 2002–2015.
Colomina I, Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing. 92 (0924–2716): 79–97.
Cucchiaro S, Cavalli M, Vericat D, Crema S, Llena M, Beinat A, Marchi L, Cazorzi F. 2018. Monitoring topographic changes through 4D-structure-from-motion photogrammetry: Application to a debris-flow channel. Environmental Earth Sciences. 77(18): 632–652.
Faulkner H. 2013. Badlands in marl lithologies: A field guide to soil dispersion, subsurface erosion and piping-origin gullies. Catena. 106 (0341–8162): 42–53.
Frankl A, Poesen J, Deckers J, Haile M, Nyssen J. 2013. Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology. 173 (0169–555X): 185–195.
Hosseinalizadeh M, Kariminejad N, Campetella G, Jalalifard A, Alinejad M. 2018 a. Spatial point pattern analysis of piping erosion in loess-derived soils in Golestan Province, Iran. Geoderma. 328 (0016–7061): 20–29.
Hosseinalizadeh M, Kariminejad N, Alinejad M. 2018b. An application of different summary statistics for modelling piping collapses and gully headcuts to evaluate their geomorphological interactions in Golestan Province, Iran. Catena. 171 (0341–8162): 613–621.
Hosseinalizadeh M, Kariminejad N, Rahmati O, Keesstra S, Alinejad M, Mohammadian Behbahani A. 2019. How can statistical and artificial intelligence approaches predict piping erosion susceptibility?. Science of the Total Environment. 646 (0048–9697): 1554–1566.
Jalalifard A, Hosseinalizadeh M, Komaki ChB, Azim Mohseni M. 2018. Modeling of piping erosion in loess lands. Journal of Environmental Erosion Research. 4(32): 1–18. (In Persian).
Jones JAA. 2010. Soil piping and catchment response. Hydrological processes. 24(12): 1548–1566.
Kariminejad N, Hosseinalizadeh M, Pourghasemi HR, Bernatek-Jakiel A, Campetella G, Ownegh M. 2019a. Evaluation of factors affecting gully headcut location using summary statistics and the maximum entropy model: Golestan Province, NE Iran. Science of the Total Environment. 677 (0048–9697): 281–298.
Kariminejad N, Hosseinalizadeh M, Pourghasemi HR, Bernatek‐Jakiel A, Alinejad M. 2019b. GIS‐based susceptibility assessment of the occurrence of gully headcuts and pipe collapses in a semi‐arid environment: Golestan Province, NE Iran. Land Degradation & Development. 30 (18): 2163–2380.
Knapen A, Poesen J. 2010. Soil erosion resistance effects on rill and gully initiation points and dimensions. Earth Surface Processes Landform. 35 (2): 217–228.
Lozano-Garcia B, Parras-Alcantara L, Brevik EC. 2016. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Science of the Total Environment. 544 (0048–9697): 963–970.
Maleki S, Khormali F, Bodaghabadi MB, Mohammadi J, Hoffmeister D, Kehl M. 2018. Role of geomorphic surface on the above-ground biomass and soil organic carbon storage in a semi-arid region of Iranian loess plateau. Quaternary International. 134 (3–4): 178–189.
Marzolff I, Ries JB, Poesen J. 2011. Short‐term versus medium‐term monitoring for detecting gully‐erosion variability in a Mediterranean environment. Earth Surface Processes and Landforms. 36(12): 1604–1623.
Mlambo R, Woodhouse I, Gerard F, Anderson K. 2017. Structure from motion (SfM) Photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests. 8 (3): 68–72.
Peter KD, d'Oleire-Oltmanns S, Ries JB, Marzolff I, Hssaine AA. 2014. Soil erosion in gully catchments affected by land-levelling measures in the Souss Basin, Morocco, analysed by rainfall simulation and UAV remote sensing data. Catena. 113 (0341–8162): 24–40.
Poesen J, Nachtergaele J, Verstraeten G, Valentin C. 2003. Gully erosion and environmental change: Importance and research needs. Catena. 50(2–4): 91–133.
Pourghasemi HR, Yousefi S, Kornejady A, Cerdà A. 2017. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Science of the Total Environment. 609 (0048–9697):764–775.
Seibert J, Stendahl J, Sorensen R. 2007. Topographical influences on soil properties in boreal forests. Geoderma. 141(1–2): 139–148.
Stöcker C, Eltner A, Karrasch P, 2015. Measuring gullies by synergetic application of UAV and close range photogrammetry—A case study from Andalusia, Spain. Catena. 132 (0341–8162): 1–11.
Teka K, Nyssen J, Teha N, Haile M, Deckers J. 2015. Soil, land use and landform relationship in the Precambrian lowlands of northern Ethiopia. Catena. 131(0341–8162): 84–91.
Torri D, Poesen J. 2014. A review of topographic threshold conditions for gully head development in different environments. Earth Science Reviwe. 130 (0012–8252): 73–85.
Trimble Business Center. 2008. T.B.C Release 2: Capability to Efficiently Edit, Process, and Adjust Geospatial Data. Trimble Business Center, Ohio, U.S.A. www.trimble.com.UNISDR. 2009. Terminology on Disaster Risk Reduction. United Nations International Strategy for Disaster Reduction (UNISDR): Geneva, Switzerland.
Tsui CC, Chen ZS, Hsieh CF. 2004. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma. 123(1–2): 131–142.
Tziavou O, Pytharouli S, Souter J. 2017. Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimumresults. The address for the corresponding author was captured as affiliation for all authors. Engineering Geology. 232 (0013–7952): 12–21.
Vega F, Ramírez F, Siaz M, Rosua F. 2015. Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering. 132 (1537–5110): 19–27.
Verachtert E, Van Den Eeckhaut M, Poesen J, Deckers J. 2010 Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium. Geomorphology, 118 (0169–555X): 339–348.
Wang X, Wei H, Khormali F, Taheri M, Kehl M, Frechen M, Lauer M, Chen M. 2016. Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications. Quaternary International. In Press. Quaternery international, 429 (1040–6182): 41–51.
Weiler M, McDonnell JJ. 2007. Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resources Research. 43(3): 1–13.
Xu Q, Kou P, Wang C, Yunus AP, Xu J, Peng S, He C. 2019. Evaluation of gully head retreat and fill rates based on high-resolution satellite images in the loess region of China. Environmental Earth Sciences. 78(15): 465–480.
Zhang Y, Wua Y, Liu B. 2006. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil & Tillage Research. 96 (0167–1987): 28–41.