Awareness of the drought status and the prediction of its future conditions play an important role in water resources management programs. In this regard, rainfall and temperature variables have a great influence on the severity and duration of this phenomenon. Regarding the status of the Urmia Lake in recent years and the water stress in its watershed, in this study, the drought situation in Saghez synoptic station as one of the important stations of this basin in different time-scales using the Standardized Evapotranspiration Index (SPEI) and SVM model with three linear, polynomial, and radial basis function and Bayesian network (BN) models, were investigated. For this purpose, the SPEI index in the short-term (1 and 3 months), mid-term (6, 12-months) and long-term (24 and 48-months) during the 49-year statistical period for monitoring the drought status at this station was used. Results showed that there was 8 prolonged periods of drought for the years 1962-1968, 1972-1974, 1978-1979, 1980-1982, 1983-1984, 1986-1987, 1999-2003 and 2007-2009 during the statistical period. Then SPEI values were applied to five input models with a delay of 1 to 5 months and SVM and BN models were used to predict drought. The results showed that in both methods, the model with 5-time delay had better performance and the linear basic function in the SVM method was more accurate than the other two functions. Also, the predictive accuracy of these models is directly correlated with increasing the SPEI scale, so that the correlation coefficient in the Bayesian network method at the test stage ranged from 0.174 in 1-month time-scale to 0.985 on a 48-month time-scale and in the SVM method with a linear basic function, it has risen from 1.149 to 0.983. |
- Abramopoulos, F., C. Rosenzweig and B. Choudhury. 1988. Improved ground hydrology calculations for global climate models (GCMs): soil water movement and evapotranspiration. Journal of Climate, 1(9): 921-941.
- Adamowski, J and S.O. Prasher. 2012. Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data/Porównanie metod uczenia maszynowego do prognozowania spływu w zlewniach górskich na podstawie ograniczonych danych. Journal of Water and Land Development, 17(1): 89-97.
- Ahmadi, F., F. Radmanesh, and R. Mirabbasi Najaf Abadi. 2014. Comparison between genetic programming and support vector machine methods for daily river flow forecasting, case study: Barandoozchay River. Journal of Water and Soil, 28(6): 1162-1171. (In Persian)
- Ahmadi, F., F. Radmanesh, R. Mir Abbasi Najf Abadi. 2016. Application of bayesian networks and genetic programming for predicting daily river flow, case study: Barandoozchay River. Irrigation Sciences and Engineering, 39(4): 213-223. (In Persian)
- Allen, R.G., L.S. Pereira, D. Raes and M. Smith. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements, FAO Irrigation and drainage Paper 56, FAO, Rome, 300(9): D05109.
- Behzad, M., K. Asghari, M. Eazi and M. Pallhang. Generalization performance of support vector machines and neural networks in runoff modeling. Expert Systems with Applications, 36: 7624-7629.
- Borsuk, M.E., D. Higdon, C.A. Stow and K.H. Reckhow. 2001. A bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones. Ecological Modelling, 143: 165-181.
- Botsis, D., P. Latinopoulos and K. Diamantaras. 2011. Rainfall-runoff moeling using suport vector. Regression and Artificial Neural Networks. 12th International Conference on Environmental Science and Technology (CEST2011), Rhodes, Greece, 8-10 September.
- Brandt, G and H. Henriksen. 2003. Protection of drinking water sources for quality and quantity, groundwater protection in the Greater Copenhagen area. In: Future Scenarios for Water Management in Europe. FIRMA Conference, 19-20 February, Barcelona, SP.
- Da Silva, V.D.P.R. 2004. On climate variability in northeast of Brazil. Journal of Arid Environments, 58, 575-596.
- Dibike, Y.B., S. Velickov, D. Solomatine and M.B. Abbott. Model induction with support vector machines: introduction and applications. Journal of Computing in Civil Engineering 15(3): 208–216
- Dorner, S., J. Shi and D. Swayne. 2007. Multi-objective modelling and decision support using a bayesian network approximation to a non-point source pollution model. Environmental Modelling and Software, 22: 211-222.
- Hamel, L.H. 2011. Knowledge discovery with support vector machines. Vol. 3, John Wiley and Sons.
- Hosking, J.R. 2009. L- Wiley StatsRef: Statistics Reference Online.
- Kempes, C., O. Myers, D. Breshears and J. Ebersole. 2008. Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data. Journal of Arid Environments, 72(4): 350-357.
- Labudova, L., L. Schefczyk and G. Heinemann. 2014. The comparison of the SPI and the SPEI using COSMO model data in two selected Slovakian river basins. Paper presented at the EGU General Assembly Conference Abstracts.
- Madadgar, S. and H. Moradkhani. 2014. Spatio-temporal drought forecasting within bayesian networks. Journal of Hydrology, 512: 134-146.
- Miller, J.F and P. Thomson. 2000. Cartesian genetic programming. Paper presented at the European Conference on Genetic Programming. Climatology, 35(13): 4027-4040.
- Mostafazadeh, R., M. Shahabi and M. Zabihi. 2015. Analysis of meteorological drought using Triple Diagram Model in the Kurdistan Province, Iran. Geographical Planning of Space Quarterly Journal, 17: 129-140 (in Persian).
- Neapolitan, R.E. 2003. Learning bayesian networks. Prentice Hall Series in Artificial Intelligence, 693 pages.
- Nikbakht Shabazi, A.R. 2008. Application of SVM in predicting the river flow. In: Proceedings of 8th Iranian Hydraulic Conference, 24-26 Nov, Tehran University, Tehran, Iran (in Persian).
- Nikoo, M.R and R. Karachian. 2009. Bayesian network performance assessment on river water quality management: application of the ratio–trade systems. Journal of Water and Wastewater, 20(1): 23-33.(In Persian)
- Potop, V., and M. Možný. 2011. The application a new drought index–standardized precipitation evapotranspiration index in the Czech Republic. Mikroklima a Mezoklima Krajinných Structur a Antropogenních Prostředí, 2: 2-14.
- Raziei, T., P. Daneshkar Arasteh, R. Akhtari and B. Saghafian. 2007. Investigation of meteorological droughts in the Sistan and Balouchestan Province, using the standardized precipitation index and Markov chain model. Iran-Water Resources Research, 3(1): 25-35 (in Persian).
- Reggiani, P. and A.H. Weerts. 2008. A bayesian approach to decision-marking under uncertainty: an application to real-time forecasting in the River Rhine. Journal of Hydrology, 356: 56-69
- Samadianfard, S. and E. 2017. Prediction of SPI drought index using support vector and multiple linear regressions. Journal of Soil and Water Resources Conservation, 6(4): 1-16 (in Persian).
- Stagge, J.H., L.M. Tallaksen, L. Gudmundsson, A.F. Van Loon and K. Stahl. 2015. Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology, 35(13): 4027-4040.
- Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review, 38(1): 55-94.
- Vapnik, V.N. 1998. Statistical learning theory. Wiley, New York.
- Vicente-Serrano, S.M., S. Beguería and J.I. López-Moreno. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7): 1696-1718.
- Vicente-Serrano, S.M., J.I. López-Moreno, A. Drumond, L. Gimeno, R. Nieto, E. Morán-Tejeda and J. Zabalza. 2011. Effects of warming processes on droughts and water resources in the NW Iberian Peninsula (1930−2006). Climate Research, 48(2/3): 203-212.
- Whipple, W. 1966. Regional drought frequency analysis. Journal of the Irrigation and Drainage Division, 92, 11-32.
- Yu, P.S., S.T. Chen and I.F. Chang. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328: 704-716.
- Zareabyaneh, H., M. GHobaeisoogh and A. Mosaedi. 2016. Drought monitoring based on Standardized Precipitation Evaoptranspiration Index (SPEI) under the effect of climate change. Water and Soil (Agricultural Sciences and Technology), 29(2): 374-392 (in Persian).
|