- Acharya, N., N.A. Shrivasta, B.K. Panigrahi and U.C. Mohanty. 2013. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Climate Dynamics, 43: 1303–1310.
- Adamowski, J. and H. Fung Chan. 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4): 28-40.
- Adamowski, K., A. Prokoph and J. Adamowski. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes, 23(18): 2686-2696.
- Alizamir, M. and S. Sobhanardakani. 2018. An Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur Journal of Health Sciences, doi: 10.5812/jjhs.67544.
- Cheng, C.T., W.J. Niu, Z.K. Feng, J.J. Shen and K.W. Chau. 2015. Daily reservoir runoff forecasting method using artificial neural network based on quantum-behaved particle swarm optimization. Water, 7(8): 4232-4246.
- Coulibaly, P., F. Anctil, R. Aravena and B. Bobde. 2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 37(4): 885-896.
- Deo, R.C. and M. Şahin. 2014. Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmospheric Research, 153: 512-525.
- Fang, W., L. Juan, Y. Ding and X. Wu. 2010. A Review of quantum-behaved particle swarm optimization. IETE Technical Review, 27(4): 10-26.
- Feng, Z.K., W.J. Niu and C.T. Cheng. 2017. Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling. Energy, 131: 15-26.
- Huang, G., G.B. Huang, S. Song and K. You. 2015. Trends in extreme learning machines: a review. Neural Networks, 61: 32-48.
- Huang, G.B., L. Chen and C.K. Siew. 2006. Universal approximation using incremental constructive feedforward networks with random hidden nodes. Ieee Transactions on Neural Networks, 17(4): 879-892.
- Huang, G.B., H. Zhou, X. Ding and R. Zhang. 2012. Extreme learning machine for regression and multiclass classification. Ieee Transactions on Systems, Man and Cybernetics, 42(2): 513-529.
- Huang, G.B., Q.Y. Zhu and C.K. Siew. 2006. Extreme learning machine: theory and applications. Neurocomputing, 70: 489-501.
- Jang, J.S.R., C.T. Sun and E. Mizutani. 1997. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. IEEE Transactions on Automatic Control, 42(10): 1482-1484.
- Kisi, O., M. Alizamir and M. Zounemat-Kermani. 2017. Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Natural Hazards, 87: 367–381.
- Li, Z., L. Ye, Y. Zhao, X. Song, J. Teng and J. Jin. 2016. Short-term wind power prediction based on extreme learning machine with error correction. Protection and Control of Modern Power Systems. doi: 10.1186/s41601-016-0016-y.
- Liu, T., Y. Ding, X. Cai and X. Zhang. 2017. Extreme learning machine based on particle swarm optimization for estimation of reference evapotranspiration. Proceedings of the 36th Chinese Control Conference, July 26-28, 2017, Dalian, China.
- Mokhtari, Z., A. Nazemi and A. Nadiri. 2012. Prediction of groundwater level using artificial neural networks, case study: Shabestar Plain. Journal of Geotechnical Geology, 8(4): 345-353.
- Nalley, D., J. Adamowski, B. Khalil and B. Ozga-Zielin. 2013. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmospheric Research, 132–133(2013): 375-398.
- Pingale, S.M., D. Khare, M.K. Jat and J. Adamowski. 2014. Patial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138: 73-90.
- Rajaee, T., V. Nourani, M. Zounemat-Kermani and O. Kisi. 2011. River suspended sediment load prediction: application of ANN and wavelet conjunction model. Journal of Hydrologic Engineering, 16(8): 10-26.
- Rajaei, T. and A. Zeinivand. 2014. Modeling of groundwater level using a wavelet-hybrid model-artificial neural network, case study: Sharifabad Plain. Journal of Civil and Environmental Engineering, 44(4): 12-36.
- Sezen, C. and T. Partal. 2017. A wavelet transformation-genetic algorithm-artificial neural network combined model for precipitation forecasting. The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM), 1: 372-378.
- Shi, Y. and R. Eberhart. 2001. Fuzzy adaptive particle swarm optimization. Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, doi: 10.1109/CEC. 2001. 934377
- SultanAbdulla, S., M. Malek, N. SultanAbdullah, O. Kisi and K. Siah Yap. 2015. Extreme learning machines: a new approach for prediction of reference evapotranspiration. Journal of Hydrology, 527: 184-195.
- Taormina, R., K.W. Chau and B. Sivakumar. 2015. Neural network river forecasting through baseflow separation and binary-coded swarm optimization. Journal of Hydrology, 529(3): 1788-1797.
- Yang, Z., W. Lu, Y. Long and P. Li. 2009. Application and comparison of two prediction models for groundwater levels, a case study in Western Jilin Province, China. Journal of Arid Environments, 73: 487-492.
- Yoon, H., Y. Hyun, K. Ha, K.K. Lee and G.B. Kim. 2016. A method to improve the stability and accuracy of ANN and SVM-based time series models for longterm groundwater level predictions. Computers and Geosciences, 90: 144-155.
- Zhu, Q.Y., A. Qin, P. Suganthan and G.B. Hu. 2005. Evolutionary extreme learning machine. Pattern Recognition, 38: 1759-1763.
|