فرزین, سعید, میرهاشمی, حمید, عباسی, حامد, مریانجی, زهره, خسروینیا, پیام. (1398). آزمون حافظه سیگنال سری زمانی و شبیهسازی فرایند بارش-رواناب با استفاده از مدلهای شبکه عصبی و ترکیب موجک-عصبی. سامانه مدیریت نشریات علمی, 11(4), 1059-1074. doi: 10.22092/ijwmse.2018.116589.1397
سعید فرزین; حمید میرهاشمی; حامد عباسی; زهره مریانجی; پیام خسروینیا. "آزمون حافظه سیگنال سری زمانی و شبیهسازی فرایند بارش-رواناب با استفاده از مدلهای شبکه عصبی و ترکیب موجک-عصبی". سامانه مدیریت نشریات علمی, 11, 4, 1398, 1059-1074. doi: 10.22092/ijwmse.2018.116589.1397
فرزین, سعید, میرهاشمی, حمید, عباسی, حامد, مریانجی, زهره, خسروینیا, پیام. (1398). 'آزمون حافظه سیگنال سری زمانی و شبیهسازی فرایند بارش-رواناب با استفاده از مدلهای شبکه عصبی و ترکیب موجک-عصبی', سامانه مدیریت نشریات علمی, 11(4), pp. 1059-1074. doi: 10.22092/ijwmse.2018.116589.1397
فرزین, سعید, میرهاشمی, حمید, عباسی, حامد, مریانجی, زهره, خسروینیا, پیام. آزمون حافظه سیگنال سری زمانی و شبیهسازی فرایند بارش-رواناب با استفاده از مدلهای شبکه عصبی و ترکیب موجک-عصبی. سامانه مدیریت نشریات علمی, 1398; 11(4): 1059-1074. doi: 10.22092/ijwmse.2018.116589.1397
آزمون حافظه سیگنال سری زمانی و شبیهسازی فرایند بارش-رواناب با استفاده از مدلهای شبکه عصبی و ترکیب موجک-عصبی
1استادیار گروه مهندسی آب و سازه های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه سمنان
2استادیار، گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان
3استادیار آب و هواشناسی، دانشکده علوم انسانی و اسلامی، دانشگاه سید جمال الدین اسدآبادی
4استادیار، دانشکده کشاورزی، دانشگاه کردستان
چکیده
در پژوهش حاضر، حافظه بلندمدت و رفتار دینامیکی سیگنال سری زمانی جریان روزانه رودخانه خرمآباد که حوزه آبخیز آن کوهستانی و دارای کاربری شهری است، با استفاده از نمایه هرست بررسی شده است. مقدار نمایه هرست سیگنال رواناب رودخانه خرمآباد در بازه زمانی سالهای 1370 تا 1393 برابر با 0.8 بهدست آمد. این مقدار نشان از حافظه بلندمدت و دینامیک غیر خطی سیگنال رواناب این رودخانه دارد. در ادامه، با بهکارگیری مدلهای شبکه عصبی و تبدیلات موجک، سری زمانی بارش-رواناب این رودخانه شبیهسازی شده است. در این راستا، با اتخاذ سریهای زمانی بارش و بارش-رواناب بهعنوان ورودی در دو الگوریتم شبکه عصبی و ترکیب موجک-عصبی، چهار مدل شامل 1) بارش، عصبی، 2) بارش-رواناب، عصبی، 3) بارش، موجک-عصبی و 4) بارش-رواناب، موجک-عصبی تولید شده است. در مدلهای ترکیبی موجک-عصبی، سری زمانی بارش و رواناب به زیرسیگنالهای فرکانس بالا و پایین تجزیه شدهاند. نتایج حاصل از ارزیابی میزان دقت و کارایی چهار مدل حاکی از آن است که مدل بارش-رواناب، موجک-عصبی با بهترین کارایی در سطح اطمینان 99 درصد، دقت بالایی در شبیهسازی رفتار رواناب دارد. بهطوری که مقایسه نتایج مدل موجک-عصبی با مدل عصبی با استفاده از آزمون مرگان-گرنجر-نیوبلد، نشان از برتری معنیدار مدل نخست دارد. همچنین، نتایج ارزیابی سیگنال خطای چهار مدل اجرا شده با استفاده از دو آزمون نسبت واننیومنو بویشاند نشان داد که یک نقطه جابهجایی معنیدار در سیگنال خطای مدل عصبی و سیگنال بارش-رواناب وجود دارد. بنابراین، وجود نوسانهای بسیار متفاوت ماهانه و دورهای شامل دو دوره 1377ـ1370 و 1393ـ1378 در رفتار بارش-رواناب منجر به کاهش کارایی و ضریب دقت مدل شبکه عصبی شده است. در صورتیکه در مدل ترکیبی موجک-عصبی با اختصاص وزن نسبی به هر زیرسیگنال، تأثیر نوسانهای کوتاه مدت، متوسط و بلند مدت در ایجاد خطای مدلسازی بهنحو مؤثری کاهش یافته است.
1Assistant Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan
2Assistant Professor, Faculty of Literature and Human Science, University of Lorestan, Iran
3Assistant Professor, Faculty of Human Science, University of Sayyed Jamaleddin Asadabadi, Iran
45Assistant Professor, Department of Water Sciences and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]
In this study, long-term memory and dynamic behavior of daily flow time-series of Khorramabad River, which its basin is mountainous and has urban land use, is investigated by Hurst exponent. The Hurst exponent of runoff signal of Khorramabad River during 1991-2014 period was obtained as 0.8. This value shows long-term memory and nonlinear, dynamic signal of this river’s runoff. By applying neural network and wavelet transforms, the rainfall-runoff time-series of this river was simulated. In this respect, by taking the time-series of rainfall and rainfall-runoff as input to the artificial neural network and wavelet-neural network hybrid, four models including: 1) rainfall, neural network, 2) rainfall-runoff, neural network, 3) rainfall, wavelet-neural network and 4) rainfall-runoff, wavelet-neural network were developed. In the hybrid models of wavelet-neural network, time-series of rainfall and runoff were decomposed to high-frequency and low-frequency sub-signals. Results of evaluating the accuracy and efficiency of the four models showed that the wavelet–neural network model correctly simulated the runoff behavior with the best efficiency at 99% confidence level. Comparison of the results of wavelet–neural network model to the neural network model, using Morgan-Granger-Newbold, showed significant superiority of the first model. Also, results of evaluating signal error of the four implemented models, using two tests of Von-Neumann and Buishand test, showed that there is a significant substitution point in the signal error of the neural network model and signal of rainfall-runoff model. Therefore, existence of very different monthly and periodical fluctuations in 1991-1998 and 1999-2014 in the behavior of rainfall-runoff leads to reduction of efficiency and precision coefficient of neural network model. While, in the hybrid model of wavelet-neural network, allocation of relative weight to each sub-signal, has effectively reduced the short-term, average and long-term fluctuations in modeling error.