- Arzani, H., Mirakhorlou, K. h., Hosseini, S. Z., 2009. Land use mapping using Landsat7 ETM data (Case study in middle catchment’s of Taleghan). Iranian Journal of Range and Desert Research, 16(2): 150-160.
- Bagheri, R., Mohamadi, S., Saljoghi, M., 2016. Land use change effects on some soil physical properties (Case study: Baft city of Kerman province). Iranian Journal of Range and Desert Research, 23(2):231-243.
- Heidarian, p., Rangzan. K., Maleki, S. and Taghizade, A., 2014. Integration of GIS and LCM measurement techniques with Urban development modeling approach (Case Study: Tehran Metropolis). Journal of Arid Environment Research, 5(17).
- Darvishsefat, A., 1988. Remote sening. Agriculyural Faculty of Tehran University, 166 p.
- Gholamalifard, M., Jorabianshoshtari, S. H., Hosseini, S. H. and Mirzaei. M., 2012. Modeling land use change in the coast of Mazandaran province using LCM in GIS environment. Journal of Ecology, 38 (64):109-124.
- Kamyab, H., Mahini, S., Hosseini, A. and Gholamalifard, M., 2011. Application of artificial neural network in urban development modeling (Case Study: Gorgan City). Journal of Human Geography Research, 76: 99-113.
- Kamyab, H., Mahini, S., Hosseini, A. and Gholamalifard, M., 2010. Adoption of information-based approach using logistic regression methodology for modeling urban development in Gorgan. Journal of Ecology, 36 (54): 89-96.
- Fatemi, S. B. and Rezaei, Y., 2012. Basics of remote sensing, third edition, Azadeh Publisher.
- Mirzapour, H., 2016, Performance comparison of CA-Markov, Geomod and LCM models to predict land use changes in Badavar-Nurabad watershed, Lorestan. MS.c thesis, Lorestan university.
- Arekhi, S., 2014. Predicting spatial change of land uses using LCM in GIS (case study: Sarable). Iranian Journal of Forest and Range Protection Research,12 (1): 1-19.
- Eastman, J. R., Van Fossen, M. E. and Solarzano, L. A. 2012. Transition potential modeling for land cover change. 48-65. In: Maguire, D., Good Child, M., Batty, M. (Eds.), GIS, Spatial analysis and modeling. ESRI Press, Redlands, California.
- Fraser, R. H., Abuelgasim, A. and Latifovic, R., 2005.A method for detecting large-scale forest cover change using coarse spatial resolution imagery. Joirnal of Remote Sensing of Environment, 95:414-427.
- Geri, F., Amici, V. and Rocchini, D., 2011. Spatially-based accuracy assessment of forestation prediction in a complex Mediterranean landscape. Journal of Applied Geography, 31 (3): 881-890.
- Jafari, M., Zehtabian, G. H. and Ehsani, A. H., 2011. Effect of thermal bonding and supervised classification algorithms of satellite data in making land use maps (Case study: Kashan). Iranian Journal of Range and Desert Research, 20 (3): 72-87.
- Kim, O. S., 2010. An assessment of deforestation models for reducing emissions from deforestation and forest degradation (REDD). Journal of Transactions in GIS, 14:631-654.
- Liew, C. S., 1997. Effects of atmospheric aerosol models on the single scattering point spread function in optical remote sensing. Remote Sensing, A Scientific Vision for Sustainable Development. IEEE International‚ (4): 1914-1916.
- Mas, J. F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T. and Houet, T., 2014. Inductive pattern-based land use/cover change models: a comparison of four software packages. Journal of Environmental Modellingand Software, 51:94-111.
- Mas, J. F., Puig, H., Palacio, J. L. and Sosa- Lopel, A., 2004. Modeling deforestation using GIS and artificial neural networks. Journal of Environmental Modeling and Software, 19 (5): 461- 471.
- Nedjai, R., Nghiem, V. T., Do, T. P. T. and Nasredine, M. N., 2016. The impact of land use and climate change in the center region of France on the physico-chemical status of aquatic systems. International Journal of Spatial, Temporal and Multimedia Information Systems, 1 (1):102-117.
- Pijanowski, B., Pithadia, S., Shellito, B. y. and Alexandridis, K., 2005. Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. International Journal of Geographical Information Science 2: 197–215.
- Pontius Jr, R. G. and Malanson, J., 2005. Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science. (19): 243-265
- Pontius Jr, R. G.; Cornell, J. D. and Hall, C. A. S., 2001. Modeling the spatial pattern of land- use change with Geomod2: Application and validation for CostaRica. Journal of Agriculture Ecosystems and Environment. 1775: 1-13
- Saifullah, K., Barus, B. and Rustiadi, E., 2017. Spatial modelling of land use/cover change (LUCC) in South Tangerang City, Banten. In IOP Conference Series. Journal of Earth and Environmental Science, 54(1) : 12-18.
- Subudhi, B. N., Bovolo, F., Ghosh, A. and Bruzzone, L., 2014. Spatio-contextual fuzzy clustering with Markov random field model for change detection in remotely sensed images. Journal of Optics and Laser Technology, 57: 284–292.
- Václavík, T. and Rogan, J., 2009. Identifying trends in land use/land cover changes in the context of post-socialist transformation in central Europe. Journal of GIS Science and Remote Sensing, 49(1):1-32.
- Vafaiee, S., 2013. Assaying and predicting the land uses changes using remote sensing and GIS (The studied area: Marivan), M.Sc. Thesis, University of Tehran.
- Wang, W., Zhang, C., Allen, J. M., Li, W., Boyer, M. A., Segerson, K. and Silander, J. A., 2016. Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut. Journal of Land, 5 (3), 25.