- ساعد پناه، م.، ف. قربانی، ج. امان اللهی. 1397. تعیین منشأ سطح آلودگی و پیشبینی غلظت برخی از عناصر آلاینده معدنی در خاکهای سطحی شهر سنندج. مجله مهندسی بهداشت محیط، 3: 250-233.
- محمدی،ج. 1385. پدومتری: آمارکلاسیک (تک متغیره وچند متغیره). جداول، انتشارات پلک، تهران.
- Ben-Moshe, T., I. Dror, and B. Berkowitz. 2010. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere. 81 (3): 387-393.
- Botes, M., and T.E. Cloete. 2010. The potential of nanofibers and nanobiocides in water purification. Crit. Rev. Microbiol. 36(1): 68–81.
- Bradford, S.A., and S. Torkzaban. 2008. Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J. 7 (2): 667–681.
- Bradford, S.A., H.N. Kim, B.Z. Haznedaroglu, S. Torkzaban, S.L. Walker. 2009. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environ. Sci. Technol. 43(18):6996–7002.
- Bradford, S.A., S. Torkzaban, and S.L. Walker. 2007. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 41(13): 3012–3024.
- Breckenridge, R.P. and A.B. Crockett 1995. Determination of background concentrations of inorganics in soils and sediments at hazardous waste sites. EPA/540/S-96/500, Washington, DC.
- Chen, G., X. Liu, and C. Su. 2011. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media under Low-Ionic-Strength Conditions: Measurements and Mechanisms. Langmuir. 27(9): 5393–5402.
- Chen, L.X., D.A. Sabatini, and T.C.G. Kibbey. 2010. Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change. J Contam. Hydrol. 118(3-4):199-207.
- Chen, M., L.Q. Ma, C.G. Hoogeweg, and W.G. Harris. 2001. Arsenic background concentrations in Florida, U.S.A. surface soils: determination and interpretation. Environ. Forensics. J. 2:117-126.
- Cho, M., H.Chung, W. Choi, andJ. Yoon. 2005. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl.Environ. Microbiol. 71: 270–275.
- Chowdhury I, Y. Hong, R.J. Honda, and S.L. Walker. 2011. Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. J. Colloid InterfaceSci. 360(2):548–555.
- Corapcioglu, M., and H. Choi, 1996. Modeling colloid transport in unsaturated porous media and validation with laboratory column data. Water Resour Res. 32(12): 3437–3449.
- Darlington, T.K., A.M. Neigh, M.T. Spencer, O.T. Guyen, and S.J. Oldenburg. 2009. Nanoparticle characteristics affecting environmental fate and transport through soil. Environ. Toxicol. Chem. 28:1191–1199.
- DeNovio, N., J. Saiers, and J. Ryan. 2004. Colloid movement in unsaturated porous media: Recent advances and future directions. Vadose Zone J. 3(2): 338–351.
- Donaldson, K., F.A. Murphy, R. Duffin, and C.A. Poland. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7(5):17 pp.
- Elimelech, M., J. Gregory, X. Jia, and R.A. Williams, 1995. Particle Deposition and Aggregation: Measurement, Modeling and Simulation. Butterworth-Heinemann Ltd., Oxford.
- Elliott, W., and W. Zhang. 2001. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environ. Sci. Technol. 35:4922–4946.
- European Commission. Commission recommendation of 18 October 2011 on the definition of nanomaterial. http:// ec.europa.eu/environment/chemicals/nanotech/index. htm#definition. Accessed August 3, 2012.
- Fang, J., M.j. Xu, D.j. Wang, B. Wen, and J.Y. Han. 2013. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH. Water Res. 47 (3): 1399-1408.
- Fang, J., X.Q. Shan, B.Wen, J.M.Lin, G. Owens, and S.R. Zhou. 2011. Transport of copper as affected by titania nanoparticles in soil columns. Environ. Pollut. 159 (5): 1248-1256.
- Fang, J., X. Shan, B. Wen, J. Lin, and G. Owens. 2009. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ. Pollut. 157:1101–1109.
- Farah, S., O. Aviv, N. Laout, S. Ratner, N. Beyth, and A.J. Domb. 2015. Quaternary ammonium polyethylenimine nanoparticles for treating bacterial contaminated water. Colloids Surf B. Biointerfaces, 128: 614–619.
- Godinez, I.G., and Darnault, C.J.G. 2011. Aggregation and transport of nano-TiO2 in saturated porous media:Effects of pH, surfactants and flow velocity. Water Res. 45(2):839-851. doi:10.1016/j.watres.2010.09.013.
- Grieger, K.D., A. Fjordboge, N.B. Hartmann, E. Eriksson, P.L. Bjerg, and A. Baun. 2010. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade- off? J. Contam. Hydrol. 118: 165-183.
- Hartmann, N.B., L.M. Skjolding, S. Foss Hansen, J. Kjølholt, F. Gottschalk, and A. Baun. 2014. Environmental fate and behaviour of nanomaterials, New knowledge on important transformation processes, Tech. rep., Danish Environmental Protection Agency, http://orbit.dtu.dk/en/publications/ environmental-fate-and-behaviour-of-nanomaterials% 28d61841c6-1d36-4d23-96eb-fdf6a7a31ef4%29/export.html, 2014.
- He, F., Zhang, M., Qian, T.W., and Zhao, D.Y. 2009. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media:Column experiments and modeling. J. Colloid. Interface Sci. 334(1):96-102.
- Jiang, X. J., X.T., Wang, M. P. Tong, and H. Kim, 2013. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm. Environ. Pollut. 174:38-49.
- Jiang, Y., L. Yu, H. Sun, X. Yin, C. Wang, S. Mathews, and N. Wang. 2017. Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength. Chem. Spec. Bioavailab. 29(1): 186-196.
- Kaegi, R., A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt, and M. Boller. 2008. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156: 233-239.
- Klaine, S.J., A.A. Koelmans, N. Horne, S. Carley, R.D. Handy, L. Kapustka, and F. von der Kammer. 2012. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ.Toxicol. Chem. 31(1): 3-14.
- Kumahor, S.K., P. Hron, G. Metreveli, G.E. Schaumann, and H.J. Vogel. 2015. Transport of citrate-coated silver nanoparticles in unsaturated sand. Sci. Total Environ. 535: 113-121.
- Li, D., F. Cui, Z. Zhao, D. Liu, Y. Xu, H. Li, X. Yang. 2014. The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation. 25: 167–177.
- Li, Y.S., Y.G. Wang, K.D. Pennell, and L.M. Abriola. 2008. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol. 42(19):7174-7180.
- Liang, Y., S.A. Bradford, J. Simunek, H. Vereecken, and E. Klumpp. 2013b. Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Res. 47 (7): 2572–2582.
- Liang, Y., S.A. Bradford, J. Simunek, M. Heggen, H. Vereecken, E. Klumpp. 2013a. Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environ. Sci. Technol. 47 (21): 12229–12237.
- Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11 (2): 431-441.
- Nancy A., C. Monteiro-Riviere, T. Lang. 2007. Nanotoxicology: characterization, dosing and health effects. USA: CRC Press Inc, 14: 225–236.
- Navarro, E., A. Baun, R. Behra, N.B. Hartmann, J. Filser, A. J. Miao, A.J. Quigg, A.P.H. Santschi, and L. Sigg. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17: 372–386.
- Ozaki, Y., and S. Kawata. 2015. Far and deep ultraviolet spectroscopy. ISBN 978-4-431-55549-0 (eBOOK).DOI 10.1007/978-4-431-55549-0. WWW. Spriger. Com
- Phenrat, T., N. Saleh, K. Sirk, R.D. Tilton, and G.V. Lowry. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ.Sci. Technol. 41:284–290
- Rahmatpour, S., M.R. Mosaddeghi, M. Shirvani, and J.J. Simunek. 2018. Transport of silver nanoparticles in intact columns of calcareous soils: The role of flow conditions and soil texture. Geoderma. 322: 89–100.
- Rückerl, R., A. Schneider, S. Breitner, J. Cyrys, and A. Peters. 2011. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal. Toxicol. 23(10): 555–592.
- Simunek, J., M.T. van Genuchten, M. Sejna. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 7:587–600.
- Stone, V., S. Hankin, R. Aitken, K. Aschberger, A. Baun, F. Christensen, T. Fernandes, S.F. Hansen, N.B. Hartmann, G. Hutchinson, H. Jonston, C. Micheletti, S. Peters, B. Ross, B. Sokull-Kluettgen, D. Stark, and L. Tran. 2010. Engineered Nanoparticles: Review of Health and Environmental Safety (ENHRES). Final report. Available at: http://ihcp.jrc.ec.europa.eu/whats- new/enhres-final-report
- Su, Y.Z. and R. Yang. 2008. Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China. J. Geochem. Explor. 98:57-64.
- Taghavy, A., A. Mittelman, Y. Wang, K.D. Pennell, and L.M. Abriola. 2013. Mathematical Modeling of the Transport andDissolution of Citrate-Stabilized Silver Nanoparticles in Porous Media. Environ. Sci. Technol. 47(15):8499-8507.
- Torkzaban, S., S.A. Bradford, M.T. van Genuchten, and S.L. Walker. 2008. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. J. Contam. Hydrol. 96:113–127.
- Tosco, T., J. Bosch, R.U. Meckenstock, and R. Sethi. 2012. Transport of Ferrihydrite Nanoparticles in Saturated Porous Media: Role of Ionic Strength and Flow Rate. Environ. Sci. and Technol. 46(7): 4008–4015.
- Tourinho, P.S., C.A. Van Gestel, v. Lofts, C. Svendsen, A.M. Soares, and S. Loureiro. 2012. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 31:1679–1692.
- US EPA (Environmental Protection Agency). 2007. Nanotechnology White Paper. US EPA Office of the Science Advisor. EPA 100/B-07/001 | February
- Wang, Y.G., Y.S. Li, and K.D. Pennell. 2008. Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ. Toxicol. Chem.27:1860–1867.
- Warheit, D.B., R.A. Hoke, C. Finlay, E.M. Donner, K.L. Reed, and C.M. Sayes. 2007. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett. 171: 99–110.
- Willmott, C.J. 1982. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 63(11):1309-1313.
- Zhang, W., V.L. Morales, M.E. Cakmak, A.E. Salvucci, L.D. Geohring, A.G. Hay, J.Y. Parlange, and T.S. Steenhuis. 2010. Colloid Transport and Retention in Unsaturated Porous Media: Effect of Colloid Input Concentration. Environ. Sci.Technol. 44(13):4965-4972.
|