- اسکندری، ش.، ک. نبیاللهی. و ر. تقیزاده مهرجردی. 1397. نقشهبرداری رقومی کربن آلی خاک (مطالعه موردی: مریوان، استان کردستان). نشریه آب و خاک، جلد32، شماره4، 750-737.
- تقی زاده مهرجردی، ر.، ع. امیریان چکان. و ف. سرمدیان. 1397. نقشهبرداری رقومی سه بعدی ظرفیت تبادل کاتیونی خاک در منطقه دورود استان لرستان. نشریه آب وخاک. جلد 28، شماره 5، 1010-998.
- حسنشاهی، ح. 1370. مطالعات خاکشناسی نیمه تفضیلی دشتهای سعادتشهر، سیوند، سیدان و ارسنجان (استان فارس). موسسه تحقیقات خاک و آب، نشریه شماره 838، 145 صفحه. تهران. ایران.
- Adhikari, K., Hartemink, A.E., Minasny, B., Bou Kheir, R., Greve, M.B., and M.H. Greve. 2014. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One 9(8).
- Amirian-Chekan, A., Taghizadeh-Mehrjardi, R., Kerry, R., Kumar, S., Khordehbin, S., and S. Yusefi-Khanghah. 2017. Spatial 3D distribution of soil organic carbon under different land use types. Environ. Monit. Assess. 189:131.
- Ballabio, C. 2009. Spatial prediction of soil properties in temperate mountain regions using support vector regression. Geoderma. 151 (3–4):338–350.
- Bishop, T.F.A., McBratney, A.B., and G.M. Laslett. 1999. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma. 91 (1–2): 27–45.
- Breiman, L. 2001. Random forests. Machine Learning. 45:5-32.
- Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., and T. C. Edwards. 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma. 239- 240:68–83.
- Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., and E.M.A. Smaling. 2014. Soil organic carbon stocks inthe Limpopo National Park, Mozambique: amount, spatial distribution and uncertainty. Geoderma. 213:46–56.
- Camera, C., Zomeni, Z., Noller, J.S., Zissimos, A.M., Christoforou, I.C., and A. Bruggeman. 2017. A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma. 285:35-49.
- Chabala, L. M., Mulolwa, A., and O. Lungu. 2017. Application of ordinary kriging in mapping soil organic carbon in Zambia. Pedosphere. 27 (2):338-343.
- Gallant, J.C., and J.M. Austin. 2015. Derivation of terrain covariates for digital soil mapping in Australia. Soil Research. 53:895–90.
- Global Soil Map. 2011. Specifications, Version 1 Global Soil Map.net products. Release 2.1.
- Guo, P.T., Li, M.F., Luo, W., Tang, Q.F., Liu, Z.W., and Z.M. Lin. 2015. Digital mapping of soil organic matter for rubber plantation at regional scale: an application of Random Forest plus residual kriging approach. Geoderma. 237-238:49-59.
- Hastie, T., Tibshirani, R., and J. Friedman. 2001. The elements of statistical learning: data mining, inference, and prediction. Springer, New York.
- Hengl, T., Huvelink, G.B.M., and A. Stein. 2004. A genericframework for spatial prediction of soil variables based on regression-kriging. Geoderma. 120 (1–2):75–93.
- Hengl, T., Heuvelink, G.B., Kempen, B., Leenaars, J.G., Walsh, M.G., Shepherd, K.D., Sila, A., MacMillan, R.A., de Jesus, J.M., Tamene, L., and J.E. Tondoh. 2015. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS One. 10:1–26.
- Ho, H.C., Knudby, A., Sirovyak, P., Xu, Y., Hodul, M., and S.B. Henderson. 2014. Mapping maximum urban air temperature on hot summer days. Remote Sens Environ. 154:38-5.
- Holmes, G., Hall, M., and E. Frank. 1999. Generating rule sets from model trees. In: Foo, N. (Ed.), AdvancedTopics in Artificial Intelligence. Lecture Notes in Artificial Intelligence. 1–12.
- Jenny, H. 1941. Factors of Soil Formation, A System of Quantitative Pedology. McGraw-Hill, New York.
- Karunaratne, S.B., Bishop, T.F.A., Baldock, J.A., and I.O.A. Odeh. 2014. Catchment scale mapping of measureable soil organic carbon fractions. Geoderma. 219:14–23.
- Kempen, B., Brus, D. J., and J.J. Stoorvogel. 2011. Three dimensional mapping of soil organic matter content using soil type–specific depth functions. Geoderma, 162 (1–2), 107–123.
- Liu, F., Zhang, G. L., Sun, Y. J., Zhao, Y. G., and D.C. Li. 2013. Mapping the three-dimensional distribution of soil organicmatter across a subtropical hilly landscape. Soil Sci. Soc. Am. J. 77(4):1241–1253.
- Mahler, P. J (ED). 1970. Manual of Multipurpose Land Classification. Report no. 212. Soil and Water Research Institute (SWIR), Tehran. Iran.
- Malone, B.P., McBratney, A.B., Minasny, B., and G.M. Laslett. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma. 154:138–152.
- Malone, B.P., Minasny, B., and A.B. McBratney. 2017. Using R for digital soil mapping. Netherlands, Springer.
- Martin, M.P., Orton, T.G., Lacarce, E., Meersmans, J., Sably, N.P.A., Paroissien, J.B., Jolivet, C., Boulonne, L., and D. Arrouays. 2014. Evaluation of modeling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale. Geoderma 223–225:97–107.
- McBratney, A.B., Mendonça Santos, M.L., and B. Minasny. 2003. on digital soil mapping. Geoderma. 117:3–52.
- McBratney, A.B., Stockmann, U., Angers, D., Minasny, B., and D. Field. 2014. Challenges for Soil Organic Carbon Research. In Alfred E. Hartemink, Kevin McSweeney (Eds.), Soil Carbon, (pp. 3-16). Cham: Springer.
- Minasny, B., and A.B. McBratney. 2006. A conditioned Latin hypercube method for samplingin the presence of ancillary information. Comput. Geosci. 32:1378–1388.
- Minasny, B., McBratney, A. B., Malone, B. P., and I. Wheeler. 2010. Digital mapping of soil carbon. 19th World Congress of Soil Science. Brisbane, Australia.
- Minasny, B., McBratney, A. B., Malone, B. P., and I. Wheeler. 2013. Digital mapping of soil carbon. Adv. Agron. 118:1–47.
- Minasny, B., and A.B. McBratney. 2016. Digital soil mapping: a brief history and some lessons. Geoderma. 264:301-311.
- Mosleh, Z., Salehi, M.H., Jafari, A., Borujeni, I.E., and A. Mehnatkesh. 2016. The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ. Monit. Assess. 188: 1–13.
- Poggio, L., and A. Gimona. 2014. National scale 3D modelling of soil organic carbon stockswith uncertainty propagation — an example from Scotland. Geoderma. 232–234:284–299.
- Rossel, R.A.V., Webster, R., Bui, E.N., and J.A. Baldock. 2014. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Glob Chang Biol. 20 (9):2953–2970.
- R Development Core Team. 2015. R: a language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna, Austria. http://www.
- Saga Development Team. 2011. System for Automated Geoscientific Analyses (SAGA). Available at http://saga-gis.org/en/index.html.
- Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and W.D. Broderson. 2012. Field book for describing and sampling soils, version 3.0. USDA Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
- Sindayihebura, A., Ottoy, S., Dondeyne, S., and M.V. Meirvenne. 2017. Comparing digital soil mapping techniques for organic carbon and clay content: Case study in Burundi's central plateaus. Catena. 156:161-175.
- Soil Survey Staff. 2014. Keys to soil taxonomy, 12th edition. USDA Natural Resources Conservation Service.
- Taghizadeh-Mehrjardi, R., Nabiollahi, K., and R. Kerry. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma. 266:98–110.
- Venables, W.N., and B.D. Ripley. 2013. Modern applied statistics with S-PLUS. Springer.
- Walkly, A., and I. A. Black. 1934. An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration. Soil Sci. 37:29-38.
- Were, K., Bui, D.T., Dick, Ø.B., and B.R. Singh. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Ind. 5:394–403.
- Wilding, L.P. 1985. Spatial variability: its documentation, accommodation and implicationto soil surveys. In: Nielsen, D.R., Bouma, J. (Eds.), Soil Spatial Variability. Pudoc, Wageningen, the Netherlands. 166–194.
- Zhao, Z., Yang, Q., Benoy, G., Chow, T.L., Xing, Z., Rees, H.W., and F.R. Meng. 2010. Using artificialneural network models to produce soil organic carbon content distribution maps acrosslandscapes. Soil Sci. 90 (1):75–87.
- Zinck, J.A. 1989. Physiography and soils. Lecture-notes for soil students. Soil Science Division. Soil survey courses subject matter: K6 ITC, Enschede, The Netherlands.
|