Aberle, J., & Nikora, V. (2006). Statistical properties of armored gravel bed surfaces. Water Resources Research, 42(W11414), pp. 1-11.
Bento, A. M., Couto, L., Pêgo, J. P., Viseu, T. (2018). Advanced characterization techniques of the scour hole around a bridge pier model. River Flow 2018 - Ninth International Conference on Fluvial Hydraulics, 40. Sept. 5-8, Lyon-Villeurbanne, France. doi: https:// doi.org/10.1051/e3sconf/20184005066.
Biggs, B. J. F., & Close M. E. (1989). Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwater Biology, 22(2), pp. 209-231.
Butkiewicz, T. (2014). Low-cost Coastal Mapping using Kinect v2 Time-of-Flight Cameras. Sept. 14-19, 2014 Oceans - St. John's. St. John's, NL, Canada. doi:10.1109/OCEANS.2014. 7003084.
Chavez, G. M., Sarocchi, D., Santana, E. A., & Borcelli, L. (2014). Using Kinect to analyze pebble to block-size clasts in sedimentology. Computers and Geosciences, 72, P 18-32.
Kalinkova, V., Chytry, K., & Chytry, M. (2018). Early vegetation succession on gravel bars of Czech Carpathian streams. Folia Geobot, 53(3), pp. 317-332.
Hauer, R. F., Locke, H., Dreitz, V. J., Hebblewhite, M., Lowe, W. H., Muhlfeld, C. C., Nelson, C. R., Proctor, M. F., & Rood, S. B. (2016). Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Science Advances, 2(6): pp. 1-13.
Keramaris, E., & Pechlivanidis, G. (2015). The influence of transition from vegetation to gravel bed and vice versa in open channels using the PIV method. Water Utility Journal, 10, pp. 37-43.
Khoshelham K., & Elbernik S. O. (2012). Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors, 12, pp. 1437-1454.
Klopfer F., Hämmerle M., & Höfle B. (2017). Assessing thePotential of a Low-Cost 3-D Sensor in Shallow-Water Bathymetry. IEEE Geoscience and Remote Sensing Letters, doi:10.1109/LGRS.2017.2713991
Kondolf, G. M., Sale, M. J., & Wolman, M. G. (1993). Modification of fluvial gravel size by spawning salmonids. Water Resources Research, 29(7), pp. 2265-2274.
Mankoff, K. D., & Russo, T. A. (2012). The Kinect: a low-cost, high-resolution, short-range 3D camera. Earth Surface Processes and Landforms, 38(9), pp. 926-936.
Masoodi, A., Noorzad, A., Majdzadeh-Tabatabai, M. R., & Samadi, A. (2018). Application of short-range photogrammetry for monitoring seepage erosion of riverbank by laboratory experiments. Journal of Hydrology, 558, pp. 380-391.
Mohajeri, S. H., Grizzi, S., Righetti, M., Romano, G. P., & Nikora, V. (2014). The structure of gravel-bed flow with intermediate submergence: a laboratory study. Journal of Water Resources Research, 51(11), pp. 9232-9255.
Nicholson, L. I., Pętlicki, M., Parton, B., & Macdonell, S. (2016). 3D surface properties of glacier penitentes over an ablation season, measured using a Microsoft Xbox Kinect. The Cryosphere, 10, pp. 1897-1913.
Nikora, V. I., Goring, D. G., & Biggs, B. F. (1998). On gravel-bed roughness characterization. Water Resources Research, 34, pp. 517-527.
Pagliari, D., & Pinto, L. (2015). Calibration of Kinect for Xbox one and comparison between the two generations of microsoft sensors. Sensors, 15(11), pp. 27569-27589.
Quinn, J. M., & Hicher, C. W. (1994). Hydraulic parameters and benthic invertebrate distributions in two gravel‐bed New Zealand rivers. Freshwater Biology, 32(3), pp. 489-500.
Toselli, F., De Lillo, F., Onorato, M., & Boffetta, G. (2019). Measuring surface gravity waves using a Kinect sensor. European Journal of Mechanics / B Fluids, 74, pp. 260-264.
Wharton, G., Mohajeri S. H., & Righetti M. (2017). The pernicious problem of streambed colmation: a multi‐disciplinary reflection on the mechanisms, causes, impacts, and management challenges. Wires Water, 4(5), pp. 1-17. doi: 10.1002/wat2.1231.
Zamani, P., Mohajeri, S. H., & Samadi, A. (2019). Application of Structure from Motion (SFM) method to determine bed surface particle size in gravel bed rivers. Iranian Journal of Soil and Water Research, 50(1): pp. 215-230. (in Persian)