- احمدی نجفابادی، م.، عسکری، ح.، سلطانی نجفآبادی، م. 1394. بررسی تأثیر سیانید هیدروژن در القای مقاومت به شوری در گیاه هالوفیت Aeluropus littoralis. نشریهمهندسی ژنتیک و ایمنی زیستی، جلد 4(1): 66-55.
- آذرمی، ف.، مظفری، و.، عباسزاده دهجی، پ.، حمیدپور، م. 1393 جداسازی باکتریهای سودوموناس فلورسنس از ریزوسفر درختان پسته و تعیین برخی خصوصیات محرک رشدی آنها. نشریه زیستشناسی خاک، جلد 2(32): 173-186.
- رسولی صدقیانی، م.ح.، ملکوتی، م.ج.، خاوازی، ک.، قنادی مراغه، م. 1387 . نقش سیدروفور سودوموناسهای فلورسنت در جذب روی توسط گندم با استفاده از ایزوتوپ Zn65. مجله علوم و فنون هستهای، جلد 43: 20-30
- سرچشمه، م.، ثواقبی، غ.، صالح راستین، ن.، علیخانی، ح. پوربابایی، الف. 1388. جداسازی، غربالگری، شناسایی نسبی و تعیین تحمل به تنش شوری و خشکی جدایههای برتر باکتریهای ریزوسفری محرک رشد (PGPR) درختان پسته. مجله تحقیقات آب و خاک ایران، جلد 40(2): 190-177.
- شریفی، ر.، علیزاده، ح.، احمدزاده، م.، رسولی صدقیانی، م.ح. 1396. بررسی روشهای مختلف ارزیابی تولید سیدروفور در سودوموناسهای فلورسنت بومی ایران. فصلنامه علمی-پژوهشی زیست شناسی میکروارگانیسمها، جلد 21(6): 117-106
- کریمی، ز.، عباسزادهدهجی، پ، اخگر، ع.، حمیدپور، م. 1396. جداسازی باکتریهای محتمل به مس از یک خاک آلوده، شناسایی و بررسی خصوصیات محرک رشدی آنها. نشریه زیستشناسی خاک، جلد 5 (2): 108-96
- Ahmad, F., Ahmad, I., KHAN, M.S. 2005. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology. 29(1): 29-34.
- Alexander, D.B. and Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils. 12(1): 39-45.
- Aziz, K., Nawaz, M., Nazir, J., Anjum, A., Yaqub, T., Ahmad, M., Rehman, M., Aziz, G. and Khan, M. 2015. Isolation, characterization and effect of auxin producing bacteria on growth of Triticum aestivum. Journal of Animal and Plant Sciences. 25(4): 1003-1007.
- Barile, M.F. 2012. Gram staining technique, Methods in Mycoplasmology V1: Mycoplasma Characterization. 1 (39): 12-23
- Basharat, A. Anjum, N.S., Shahida, H. 2010. Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World Journal of Microbiology and Biotechnology. 26(8): 1379-1384.
- Bent, E., Tuzun, S. Chanway, C. P. Enebak, S. 2001. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Canadian Journal of Microbiology. 47(9): 793-800.
- Brysk, M. M., Lauinger, C., &Ressler, C. (1969). Biosynthesis of cyanide from [2-14C15N] glycine in Chromobacteriumviolaceum. Biochimica et BiophysicaActa (BBA)-General Subjects, 184(3), 583-588.
- Chance, A. and Maehly, N. 1955 Assay of catalases and peroxidases. Methods of Biochemical Analysis. 1:357-424.
- Clawson, B. J., & Young, C. C. (1913). Preliminary report on the production of hydrocyanic acid by bacteria. Journal of Biological Chemistry, 15(3), 419-422.
- Couillerot, O.C., Prigent‐Combaret, J., Caballero‐Mellado, and Y. Moënne‐Loccoz. 2009. Pseudomonas fluorescens and closely‐related fluorescent pseudomonads as biocontrol agents of soil‐borne phytopathogens. Letters in applied microbiology. 48(5): 505-512.
- De-Bashan L, Hernandez J, Bashan Y, 2012. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation–A comprehensive evaluation,. Applied Soil Ecology, 61, 171-89
- Donate-Correa, J., León-Barrios, M., Pérez-Galdona, R. 2005. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant and Soil. 266(1-2): 261-272.
- El Zemrany, H., Cortet, J., Lutz, M.P., Chabert, A., Baudoin, E., and Haurat, J. 2006. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil biology and biochemistry. 38: 1712–1726
- Erdogan, U., Turan, M., Ates, F., Kotan, R., Çakmakçi, R., Erdogan, Y., ... & Tüfenkçi, S. (2018). Effects of Root Plant Growth Promoting Rhizobacteria Inoculations on the Growth and Nutrient Content of Grapevine. Communications in Soil Science and Plant Analysis, 1-8.
- Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology. 41: 109–117.
- Glick, B.R., Cheng, Z., Czarny, J., Duan, J .2007. Promotion of plant growth by ACC deaminase containing soil bacteria. European journal of plant pathobiology. 119:329–339
- Gregersen T. 1978. Rapid method for distinction of Gram-negative from Gram-positive bacteria., European journal of applied microbiology and biotechnology. 5: 2.123-7
- Halder, A.K. and P. K. Chakrabartty. 1993. Solubilization of inorganic phosphate by Rhizobium. Folia microbiologica. 38(4): 325-330.
- Jing, Y.S.J. and Gang, W.A.N.G., 2006. Effects of Salt Stress on Plants and the Mechanism of Salt Tolerance. World Sci-tech R & D. 4: 11-22.
- Karakurt, H., Kotan, R., DADAŞOĞLU, F., ASLANTAŞ, R., & ŞAHİN, F. (2011). Effects of plant growth promoting rhizobacteria on fruit set, pomological and chemical characteristics, color values, and vegetative growth of sour cherry (Prunus cerasus cv. Kütahya). Turkish Journal of Biology, 35(3), 283-291.
- Karlidag, H., Esitken, A., Turan, M., & Sahin, F. (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae, 114(1), 16-20.
- Kitir, N., Gunes, A., Turan, M., Yildirim, E., Topcuoglu, B., Turker, M., ... & Fırıldak, G. (2018). Bio-Boron Fertilizer Applications Affect Amino Acid and Organic Acid Content and Physiological Properties of Strawberry Plant. Erwerbs-Obstbau, 1-9.
- Lane, D. J.1991. 16S/23S rRNA sequencing. In ‘Nucleic acid techniques in bacterial systematics’.(Eds E Stackebrandt, M Goodfellow). 115–175.
- Lebeis, S.L. 2014. The potential for give and take in plant–microbiome relationships. Frontiers in plant science. 5: 287-289
- Margesin, R. and Schinner, F. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles. 5(2): 73-83.
- Miransari, M. 2014. Plant growth promoting rhizobacteria. Journal of Plant Nutrition. 37(14): 2227-2235
- Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase ‐ containing plant growth ‐ promoting rhizobacteria. Physiologiaplantarum, 118 (1), 10-15.
- Peyvandi, M., Farahani, F., Mazinani, M. H., Noormohamadi, Z., Ataii, S., & Asgharzade, A. (2012). Pseudomonas fluorescent and its ability to promote root formation of olive microshoots. International Journal of Plant Production, 4(1), 63-66.
- Pirrung, M. and Brauman, J. 1987. Involvement of cyanide in the regulation of ethylene biosynthesis. Plant physiology and biochemistry. 25(1): 55-61.
- Richardson, A.E. and Simpson, R.J. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant physiology. 156(3): 989-996.
- Sharma, S., Kumar, V., Tripathi, R. B. 2017. Isolation of phosphate solubilizing microorganism (PSMs) from soil. Journal of microbiology and Biotechnology Research. 1(2): 90-95.
- Tarrand, J. Gröschel, D. 1982. Rapid, modified oxidase test for oxidase-variable bacterial isolates. Journal of clinical microbiology 16(4):772-4:
- Thornley, M. J. 1960. The differentiation of Pseudomonas from other bacteria on the basis of arginine metabolism. Journal of Applied Bacteriology. 23: 37 52.
- Turner, S., Pryer, K.M., Miao, V.P., and Palmer, J.D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology. 46(4): 327-338.
- Veresoglou S.D. and Menexes G. 2010. Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil. 337: 469–480
- Walker, V., Couillerot, O., Von Felten, A., Bellvert, F., Jansa, J., and Maurhofer, M. 2012. Variation of secondary metabolite levels in maize seedling roots induced by inoculation ith Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil. 356: 151–163.
|