- احمدی آغتپه، ا.، ا. قنبری، ا. سیروسمهر، ب. سیاهسر و م.ر. اصغریپور. 1391. اثر پساب تصفیه شده، همراه با محلول پاشی کود کامل بر برخی خصوصیات کمی و کیفی علوفه ارزن دمروباهی (Setaria italica). نشریه آب و خاک (علوم و صنایع کشاورزی). 26(3): 671-660.
- کریمی، ز.، ع. نصرالهزاده اصل، ف. جلیلی و ر. ولیلو. 1391. تأثیر کود زیستی فسفات بارور-2 و محلول پاشی عناصر ریزمغذی بر عملکرد و اجزای عملکرد ذرت دانهای 704. مجله پژوهش در علوم زراعی. 4(15): 43-33.
- عاشوری، م.، م. اصفهانی، س. عبدالهی و ب. ربیعی. 1392. اثر محلولپاشی مکملهای کود آلی بر عملکرد دانه، اجزای عملکرد و خصوصیات کیفی دو رقم برنج (Oryza sativa L.). تحقیقات غلات. 3(4): 305-291.
- Bargmann, I., M.C. Rillig, A. Kruse, J.M. Greef, and M. Kücke. 2014. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant Nutr. Soil Sc. 177 (1): 48-58.
- Bargmann, I., M.C. Rillig, W. Buss, A. Kruse, and M. Kuecke. 2013. Hydrochar and biochar effects on germination of spring barley. J. Agron. Crop Sci. 199(5): 360-373.
- Child, M. 2014. Industrial-Scale hydrothermal carbonization of waste sludge materials for fuel production. MSc dissertation, Lappeenranta University of Technology, Lappeenranta, Finland.
- Dane, J.H., and G.C.Topp. 2002. Methods of soil analysis. Part 4, Physical methods. ASA-CSSA-SSSA Publisher, USA.
- Fang, J., B. Gao, J. Chen, and A.R. Zimmerman. 2015. Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chem. Eng. J. 267: 253-259.
- Funke, A., and F. Ziegler. 2010. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod. Bior. 4(2): 160-177.
- Gajić, A., and H.J. Koch. 2012. Sugar beet growth reduction caused by hydrochar is related to nitrogen supply. J. Environ. Qual. 41(4): 1067-1075.
- Gao, P., Y. Zhou, F. Meng, Y. Zhang, Z. Liu, W. Zhang, and G. Xue. 2016. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy. 97: 238-245.
- Hu, B., K. Wang, L. Wu, S.H. Yu, M. Antonietti, and M.M. Titirici. 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22(7): 813-828.
- Jin, F., and H. Enomoto. 2009. Hydrothermal conversion of biomass into value-added products: technology that mimics nature. BioRes. 4(2): 704-713.
- Jones Jr, J.B. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC press, Boca Raton, FL, USA.
- Kabata-pendias, A. 2010. Trace elements in soils and plants. CRC press, Boca Raton, FL, USA.
- Kalderis, D., M. Kotti, A. Méndez, and G. Gascó. 2014. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth. 5(1): 477-483.
- Kambo, H.S., and A. Dutta. 2014. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl. Energ. 135: 182-191.
- Kammann, C., S. Ratering, C. Eckhard, and C. Müller. 2012. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J. Environ. Qual. 41(4): 1052-1066.
- Kang, S., X. Li, J. Fan, and J. Chang. 2012. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Indust. Engin. Chem. Res. 51(26): 9023-9031.
- Libra, J.A., K.S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer, and J. Kern. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2(1): 71-106.
- Liu, Z., A. Quek, and R. Balasubramanian. 2014. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars. Appl. Energ. 113: 1315-1322.
- Lusiba, S., J. Odhiambo, and J. Ogola. 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Arch. Agron. Soil. Sci. 63: 477-490.
- Meyer, S., B. Glaser, and P. Quicker. 2011. Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ. Sci. Technol. 45(22): 9473-9483.
- Mukherjee, A., A. Zimmerman, and W. Harris. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma. 163(3): 247-255.
- Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-36.
- Naeem, M.A., M. Khalid, M. Aon, G. Abbas, M. Amjad, B. Murtaza, W.D. Khan, and N. Ahmad. 2018. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. J. Plant Nutr. 41: 112-122.
- Nakhshiniev, B., M.K. Biddinika, H.B. Gonzales, H. Sumida, and K. Yoshikawa. 2014. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity. Bioresource Technol. 151: 306-313.
- Novak, J., K. Spokas, K. Cantrell, K. Ro, D. Watts, B. Glaz, and P. Hunt. 2014. Effects of biochars and hydrochars produced from lignocellulosic and animal manure on fertility of a Mollisol and Entisol. Soil Use Manage. 30(2): 175-181.
- Page, A.L., R.H. Miller, and D.R. Keeney. 1982. Methods of soil analysis. Part 2, Chemical and microbiological properties. ASA-CSSA-SSSA Publisher, Madison, Wisconsin, USA.
- Parshetti, G.K., S. Chowdhury, and R. Balasubramanian. 2014. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresource Technol. 161: 310-319.
- Peterson, A.A., F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal Jr, and J.W. Tester. 2008. Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energ. Environ. Sci. 1(1): 32-65.
- Petrović, J., N. Perišić, J.D. Maksimović, V. Maksimović, M. Kragović, M. Stojanović, and M. Mihajlović. 2016. Hydrothermal conversion of grape pomace: Detailed characterization of obtained hydrochar and liquid phase. J. Anal. Appl. Pyrol. 118: 267-277.
- Poerschmann, J., B. Weiner, H. Wedwitschka, A. Zehnsdorf, R. Koehler, and F.D. Kopinke. 2015. Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii. Bioresource Technol. 189: 145-153.
- Reza, M.T., W. Becker, K. Sachsenheimer, and J. Mumme. 2014. Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determinationof selective components in HTC solid and liquid products derived from maize silage. Bioresource Technol. 161: 91-101.
- Reza, M.T., J.G. Lynam, M.H. Uddin, and C.J. Coronella. 2013. Hydrothermal carbonization: Fate of inorganics. Biomass Bioenerg. 49: 86-94.
- Schneider, D., M. Escala, K. Supawittayayothin, and N. Tippayawong. 2011. Characterization of biochar from hydrothermal carbonization of bamboo. Int. J. Energ. Environ. 2(4): 647-652.
- Smith, A.M., S. Singh, and A.B. Ross. 2016. Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion behaviour of hydrochar. Fuel. 169: 135-145.
- Soltanpour, P.N., and A.P. Schwab. 1977. A new soil test for simultaneous extraction of macro‐and micro‐nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 8(3): 195-207.
- Sun, Y., B. Gao, Y. Yao, J. Fang, M. Zhang, Y. Zhou, and L. Yang. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 240: 574-578.
- Vozhdayev, G.V., K.A. Spokas, J.S. Molde, S.M. Heilmann, B.M. Wood, and K.J. Valentas. 2015. Response of maize germination and growth to hydrothermal carbonization filtrate type and amount. Plant Soil. 396(1-2): 127-136.
|