In this research, the effect of vemicompost on yield and yield components of tomato and okra was investigated under irrigation with contaminated water. The experiment included two treatments using vermicompost and control with three replications; and it was conducted at the Campus of Agriculture and Natural Resources of Razi University. Vermicompost was applied at 25 ton per hectare in two stages: 10 t/ha at the crop cultivation period, and 15 t/ha one month after cultivating. The effect of vermicompost growth indexes including plant height, stem diameter, fruit diameter and weight, chlorophyll index, stem and leaf dry matter percentage and yield were investigated. The comparison of the average yield of tomato and okra showed that only fruit weight of tomatoes was statistically significantly different, and there was no statistically significant difference between the two treatments in other characteristics. In tomatoes treated with vermicompost, plant height, stem diameter, chlorophyll index, stem and leaves dry matter percentage were increased by 2.3%, 0.3%, 7.3%, 5.6% and 9.1 percent and fruit diameter, fruit weight and yield were decreased 25.5%, 42.6% and 73.2 percent, respectively compared with the control. Also, in okra under application of vermicompost, plant height, stem diameter, fruit diameter, fruit weight, chlorophyll index and yield were increased by 10.3%, 1.2%, 10.4%, 13.3%, 3% and 35.7%, while stem and leaves dry matter percentages were increased by 5.5% and 11.7%, respectively, compared with the control. Considering the significant reduction in tomato fruit weight and reduction of its fruit diameter and yield, as well as reduction of stem and leaves dry matter in okra, and in light of the high risk of using contaminated water and possible contamination of the fruit and reduction of its quality and health, the use of vermicompost for these crops under irrigation with contaminated water is not recommended. In general, the use of contaminated water is unacceptable for human and animal foods. |
- ایرانیپور، ر.، ملکوتی، م.ج.، عابدی، م.ج. و سجادی، ا. 1386. اثرات اصلی خاک فسفات، گوگرد و باکتری تیوباسیلوس بر شاخصهای عملکرد محصول ذرت و اثرات باقیمانده آن بر عملکرد محصول جو. علوم خاک و آب. 21(2): 205-195.
- درزی، م.ت.، حاجسیدهادی، م.ر. و رجالی، ف. 1389. تاثیر کاربرد ورمیکمپوست و کود فسفات زیستی بر عملکرد و اجزاء عملکرد گیاه دارویی انیسون (Pimpinella anisum L.). تحقیقات گیاهان دارویی و معطر ایران. 26 (4): 465-452.
- درزی، م.ت.، قلاوند، ا. و رجالی، ف. 1387. بررسی اثر مایکوریزا، ورمیکمپوست و کود فسفات زیستی بر گلدهی، عملکرد بیولوژیک و همزیستی ریشه، در گیاه دارویی رازیانه. علوم زراعی. 10 (1): 109-88.
- درزی، م.ت.، قلاوند، ا. و رجالی، ف. 1388. تاثیر مصرف کودهای بیولوژیک بر روی جذب عناصر N، P، K و عملکرد دانه در گیاه دارویی رازیانه. تحقیقات گیاهان دارویی و معطر ایران. 25 (1): 19-1.
- درزی، م.ت.، قلاوند، ا.، رجالی، ف. و سفیدکن، ف. 1385. بررسی کاربرد کودهای زیستی بر عملکرد و اجراء عملکرد گیاه دارویی رازیانه. تحقیقات گیاهان دارویی و معطر ایران. 22 (4): 292-276.
- رحیمیان، م.ح. و ذبیحی، ح.ر. 1396. اثر استفاده از مقادیر مختلف کمپوست و پلیمر سوپر جاذب رطوبت بر عملکرد و کارایی مصرف آب گوجهفرنگی گلخانهای. نشریه پژوهش آب در کشاورزی. 31 (4): 558-547.
- رستمپورکاریزکی، ع. 1393. اثر قارچ میکوریز و ورمیکمپوست روی خصوصیات مورفولوژیکی و فیزیولوژیکی مرزه تحت تنش شوری. پایان نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، مشهد. صفحه 90.
- سجادینیک، ر. یدوی، ع. بلوچی، ح. و فرجی، ه. 1390. مقایسه تاثیر کودهای شیمیایی (اوره)، آلی (ورمیکمپوست) و زیستی (نیتروکسین) بر عملکرد کمی و کیفی کنجد. دانش کشاورزی و تولید پایدار. 21 (2): 101-87.
- شکوهی، س. 1392. بررسی تاثیر ورمیکمپوست، کمپوست کود گاوی و ضایعات قارچ خوراکی بر روی رشد و عملکرد نخود و خصوصیات خاک. پایاننامه کارشناسی ارشد، دانشگاه فردوسی مشهد، مشهد.
- عزیزی، م.، رضوانی، ف.، حسنزاده خیاط، م.، لگزیان، ا. و نعمتی، ه. 1387. تاثیر سطوح مختلف ورمیکمپوست و آبیاری بر خصوصیات مورفولوژیک و میزان اسانس بابونه آلمانی (Matricaria recutita) رقم Goral. مجله تحقیقات گیاهان دارویی و معطر ایران. 24(1): 93-82.
- وحیدی، ع.، علیزاده، ا.، باقیزاده، ا. و انصاری، ح. 1397. بررسی اثر کاربرد میکوریزا، ورمیکمپوست و کود شیمیایی بر عملکرد و میزان لاوسون گیاه دارویی حنا در شرایط تنش کم آبی. نشریه پژوهش آب در کشاورزی. 32 (1): 121-107.
- Arguello, J.A., Ledesma, A., Nunez, S.B., Rodriguez, C.H. and Goldfarb, M.D.D. 2006. Vermicompost effects on bulbing dynamics, nonstructural carbohydrate content, yield, and quality of Rosado paraguayo garlic bulbs. Horticulture Science Journal, 41(3): 589-592.
- Babaeian, M., Esmaeilian, Y., Tavassoli, A., Asgharzade, A. and Sadeghi, M. 2011. The effects of water stress, manure and chemical fertilizer on grain yield and grain nutrient content in barley. Journal of Scientific Research and Essays, 6(17): 3697-3701.
- Bachman, G.R. and Metzger, J.D. 2007. Physical and chemical characteristics of a commercial potting substrate amended with vermicompost produced from two different manure sources. HortTechnology Journal, 17. 336-340.
- Bahrampour, T. and Ziveh. P.S. 2013. Effect of Vermicompost on Tomato (Lycopersicum esculentum) Fruits. International Journal of Agronomy and Plant Production, 4(11): 2965-2971.
- Chanda, G.K., Bhunia, G. and Chakraborty, S.K. 2011. The effect of vermicompost and other fertilizers on cultivation of tomato plants. Journal of Horticulture and Forestry, 3(2): 42-45.
- Dhanalakhsmi, V., Remia, K.M., Shanmugapriyan, R. and Shanthi, K. 2014. Impact of addition of vermicompost on vegetable plant growth. International Research Journal of Biological Science, 3(12): 56-61.
- Gajalakshmi, S. and Abbasi, S.A. 2002. Effect of the application of water hyacinth compost, vermicompost on the growth and flowering of Crassandra undulaefolia, and on several vegetables. Bioresource Technology Journal, 85: 197-199.
- Gelik, I., Ortas, I. and Kilik, S. 2004. Effect of compost, Mycorhiza, Manure and fertilizer on some physical properties of Chromoxerert soil. Soil and Tillage Research, 78: 59-67.
- Gutie´rrez-Miceli, F.A., Moguel-Zamudio, M., Abud-Archila, and Dendooven, L. 2008. Sheep manure vermin compost supplemented with a native diazotrophic bacteria and mycorrhizas for maize cultivation. Bioresource Technology Journal, 99:7020–7026.
- Gutierrez, F.A., Santiago, J., Molina, J.A.M., Nafate, C.C., Abud, M., Llaven, M.A.O., Rincon, R. and Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato. Bioresource Technology Journal, 98: 2781-2786.
- Hei, L., Jin, P., Zhu, X., Ye, W. and Yang, Y. 2016. Characteristics of Speciation of Heavy Metals in Municipal Sewage Sludge of Guangzhou as Fertilizer. Procedia Environmental Sciences, 31: 232-240.
- International Soil Reference and Information Center. 1986. Procedure for soil analysis. Wageningen Agriculture University.
- Iqbal, H., Garcia-Perez, M. and Flury, M. 2015. Effect of biochar on leaching of organic carbon, nitrogen and phosphorus from compost in bioretention systems. Science of the Total Environment, 521: 37-45.
- Kashem, A., Sarker, A., Hossain, I. and Islam, S. 2015. Comparison of the effect of vermicompost and inorganic fertilizer on vegetable growth and fruit production of tomato (Solanumlycopersicum L.). Open Journal of Soil Science, 5: 53-5.
- Mensah, S.G. 2013. HYT bio fertilizers and biochar effects on the growth, yield and fruit quality of okra in the forest ecological zone of Ghana. MS thesis, University of Ghana, Ghana.
- Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Department of Agriculture, Washington, D.C., USDA Circ. 939.
- Roy, S., Arunachalam, K., Dutta, B.K. and Arunachalam, A. 2010. Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Applied Soil Ecology Journal, 45:78–84.
- Sallaku, G., Babaj, I., Kaciu, S. and Balliu, A. 2009. The influence of vermicompost on plant growth characteristics of cucumber (Cucumis sativus L.) seedlings under saline conditions. Journal of Food, Agriculture and Environment, 7: 869-872.
- Sharifi, Z. and Renella, G. 2015. Assessment of a particle size fractionation as a technology for reducing heavy metal, salinity and impurities from compost produced by municipal solid waste. Waste Management Journal, 38: 95-101.
- Sharma, R.K., Agrawal, M. and Marshall, F.M. 2006. Heavy metals contamination in vegetables grown in waste water irrigated areas of Varanasi, India. Bulletin of Environmental Contamination and Toxicology, 77: 312-318.
- Sinha, R.K., Dalsukh, V., Krunal, C. and Sunita, A. 2010. Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams of Sir Charles Darwin. Journal of Agricultural Biotechnology Sustainable Development, 2(7): 113-128.
- Syed, I.H., Muhammad, F., Tariq, S., Arshad, A., Muhammad, A., Muhammad, Z.K., Shahbaz, A. and Tausif, T. 2015 Optimizing Yield and Nutrients Content in Tomato by Vermicompost Application under Greenhouse Conditions. Natural Resources, 6: 457-464.
- Thomas, G.W. 1996. Soil pH and soil acidity. 475-490. In: Methods of soil analysis. Part 3. Chemical methods, SSSA, Madison.
- Walkley, A. and Black, I.A. 1934. An examination of Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
- Warman, P.R. and AngLopez, M.J. 2010. Vermicompost derived from different feed stocks as a plant growth medium. Bioresource Technology Journal, 101: 4479-4483.
- Zucco, M.A., Walters, S.A., Chong, S.A., Klubek, B.P. and Masabni, J.G. 2015. Effect of soil type and vermicompost applications on tomato growth. Recycling of Organic Waste in Agriculture, 4(2): 135-141.
|