- Arekhi, S., 2015. Detecting changes cover / land use with object-oriented processing satellite images using the software Idrisi Selva (Case study: Abdanan). Journal of Geographic Information, 24: 51-61.
- Baatz, M. and Schape, A., 1999. Object-oriented and multi-scale image analysis in semantic network, in Proc. 2nd Int. symposium on operalization of remote sensing, Ensched, ITC, 148-157.
- Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65: 2–16.
- Blaschke,T., 2009. Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, journal homepage: www.elsevier.com/locate/isprsjprs.pp.10-21.
- Breiman, L., 2001. Random forests. Mach. Learn, 45: 5–32.
- Brenning, A., 2009. Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection. Journal of remote sensing environmental. 113(1): 239–247.
- Carreiras, J. M. B., Pereira, J. M. C., Campagnolo, M. L. and Shimabukuro, Y. E., 2006. Assessing the extent of agriculture/pasture and secondary succession forest in the Brazilian legal Amazon using SPOT VEGETATION data. . Journal of Remote Sensing Environmental, 101(3): 283–298.
- Defniens Imaging Gmb, H., 2006. Defniens Professional 5 User Guide. http://www.defniens.com./user guide .pdf, 249p.
- Dragut, L. and Eisank, C., 2011. Object representations at multiple scales from digital elevation models. Journal of Geomorphology, 129: 183–189.
- Feizizadeh, B. and Halali, H., 2009. Comparison of pixel-based, object-oriented and effective parameters on the classification of land use / land covers in West Azerbaijan province. Journal of Applied Geography, 71: 73-84.
- Feizizadeh, B., Jafari, F. and Nazmfar, H., 2008. The use of remote sensing data to detect changes in urban land use. The Journal of Fine Arts, 34: 31-20.
- Feizizadeh, B., Pirnazar, M., Zandkarimi, A. and Abedi Gheshlaghi, H., 2015. Evaluate the use of fuzzy algorithms in increasing the accuracy of land use maps derived by processing methods object-oriented. Journal of Geographic Information, 24: 107-117.
- Gislason, P. O., Benediktsson, J. A. and Sveinsson, J. R., 2006. Random forests for land cover classification. Journal of Pattern Recognition Letters. 27(4): 294–300.
- Haudhuri, B. and Sarkar, N., 1995. Texture segmentation using fractal dimension. Journal of IEEE Transactions on Pattern Analysis and Machine Intelligence, 17: 72– 77.
- Hofmann, T., Puzicha, J. and Buhmann, J., 1998. Unsupervised texture segmentation in a deterministic annealing framework. Journal of IEEE Transactions on Pattern Analysis and Machine Intelligence, 20: 803-818.
- Huang, C., Davis, L. S. and Townshend, J. R. G., 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4): 725–749.
- Huang, L. and Ni. L., 2008. Object-oriented classification of high resolution satellite image for better accuracy, Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China, June, 25-27, 211-218.
- Jain, A. and Farrokhnia, F., 1991. Unsupervised texture segmentation using Gabor filters. Journal of Pattern Recognition. 24(12): 1167-1186.
- Kashi Zenouzi, L., Saadat, H. and Namdar, M., 2016. Comparison between the accuracy of geomorphological map using traditional and analytical photogrammetry methods (Case study: Harzand chai waters. Geographical data, 57-66.
- Linke, J. and McDermid, G., 2011. A conceptual model for multi-temporal landscape monitoring in an object-based environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 4(2): 265–271.
- Lu, D., Mausel, P., Brondizio, E. and Moran, E., 2004. Change detection techniques. International Journal of Remote Sensing, 25(12): 2365-2401.
- Matinfar, H. R., Sarmadian, F., Alavipanah, S. K. and Heck, R., 2008. Characterizing Land use/land cover types by Landsat 7 data based upon Object oriented approach in Kashan region, Iranian journal of Range and Desert Research, 14(4): 589-602.
- Mori, M., Hirose, Y. and Akamatsu, Y. L., 2003. Object- based classification of Ikonos data for rural land use mapping. Cognition Applied Notes, 5(1).
- Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S. and Weng, Q., 2011. Per-pixel vs. object-based classification of urban land covers extraction using high spatial resolution imagery. Journal of Remote Sensing of Environment. 115(5): 1145-1161.
- Otukei, J. R. and Blaschke, T., 2010. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation, 12: 27–31.
- Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1): 217–222.
- Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J. and Deadman, P., 2003. Multi agent systems for the simulation of land use and land cover change. Journal of Annals of the American Association of Geographers, 43: 314–337.
- UNEP., 1991. Status of desertification and implementation of the United Nations plan of action to combat desertification. Nairobi, Kenya.
- Van Den Eeckhaut, M., Kerle, N., Poesen, J. and Hervás, J., 2012. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data.Journal of Geomorphology, 173–174: 30–42.
- Yaghobzadeh, M. and Akbarpour, A., 2011. The effect of satellite image classification algorithm based on curve number runoff and maximum food discharge using GIS and RS, Journal of Geography and Development, 9(22): 5-22.
Yan, G., 2003. Pixel based and object oriented Image for coal fire research. http://www.ITC.com (accessed in July 2008). 3-99.