-Arbelaiz, A., Fernandez, B., Ramos, J. and Mondragon, I., 2006. Thermal and crystallization studies of short flax fiber reinforced polypropylene matrix composites: Effect of treatments. Thermochimica Acta, 440(2): 111–121.
-Ashori, A., Babaee, M., Jonoobi, M. and Hamzeh, Y., 2014. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate polymers, 102(1): 369–375.
-Baker, R.W., 2004. Membranes and modules: 97-178. In: Wiley, J. (Eds.). Membrane Technology and Application. Wiley online Library, USA, 118p.
-Chen, L., Bromberg, L., Hatton, T.A. and Rutledge, G.C., 2007. Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer, 48(16): 4675–4682.
-Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M. and Hai, Y., 2011. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4): 1804–1811.
-Cherian, B.M., Leao, A.L., Souza, S.F., Costa, L.M.M., Olyveira, G.M. and Kottaisamy, M., 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4): 1790–1798.
-Chong, L., Po-Chun, H., Hyun-Wook, L., Meng, Y., Guangyuan, Z., Nian, L., Weiyang, L. and Yi, C., 2015. Transparent air filters for high-efficiency PM2.5 capture. Naturecommunications, 1(10): 1038–1045.
-Cooper, A., Oldinski, R., Ma, H., Bryers, J.D. and Zhang, M., 2013. Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydrate Polymers, 92(1): 254–259.
-Cunha, A.G. and Gandini, A., 2010. Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose, 17(5): 875–889.
-Daneleviciute, A., Katunskis, J. and Buika, G., 2009. Electrospun PVA Nanofibres for Gas Filtration Applications. Fibers & Textiles in Eastern Europe, 6(77): 40–43.
-Daly, A. and Zannetti, P., 2007. An Introduction to Air Pollution–Definitions, Classifications, and History. Chapter 1 of ambient air pollution. In: Zannetti, P., Al-Ajmi, D. and Al-Rashied, S., (Eds). The Arab School for Science and Technology (ASST) and the EnviroComp Institute. 358P.
-Ding, J., Zhang, M., Jiang, Z., Li, Y., Ma, J. and Zhao, J., 2012. Enhancing the permselectivity of pervaporation membrane by constructing the active layer through alternative self-assembly and spin-coating. Membrane Science, 390: 218–225.
-Dobreva, T., Benavente, R., Perena, J.M., Perez, E., Avella, M. and Garcia, M., 2010. Effect of different thermal treatments on the mechanical performance of poly (l-lactic acid) based eco-composites. Journal of Applied Polymer Science, 116(2): 1088–1098.
-Dong, Y., Wang, M., Chen, L. and Li, M., 2012. Preparation, characterization of P(VDF- HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desalination, 295: 53–60.
-Doshi, J. and Reneker, D. H., 1995. Electrospinning process and applications of electrospun fibers. Electrostatics, 35(2-3): 151–160.
-Espino-Perez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A. and Domenek, S., 2013. Influence Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly (lactide) based bionanocomposites. European Polymer, 49(10): 3144–3154.
-Gebald, C., Wurzbacher, J.A., Tingaut, P., Zimmermann, T. and Steinfeld, A., 2011. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology, 45(20): 9101–9108.
-Gousse, C., Chanzy, H., Cerrada, M.L. and Fleury, E., 2004. Surface silyation of cellulose microfibrils: preparation and rheological properties. Polymer, 45(5): 1569–1575.
-Habibi, Y., Chanzy, H. and Vignon, M.R., 2006. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose, 13(6): 679–687.
-Han, J., Zhou, C., Wu, Y., Liu, F. and Wu, Q., 2013. Self-Assembling Behavior of Cellulose Nanoparticles during Freeze Drying: Effect of Suspension Concentration, Particle Size, Crystal, Structure, and Surface Charge. Biomacromolecules, 14(5): 1529−1540.
-Hemraz, U.D., Boluk, Y. and Sunasee, R., 2013. Amine-decorated nanocrystalline cellulose surface synthesis characterization, and surface properties. Canadian Journal of Chemistry, 91(10): 974–98.
-Katepalli, H., Bikshapathi, M., Sharma, C.S., Verma, N. and Sharma, A., 2011. Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chemical Engineering, 171(3): 1194–1200.
-Kijenska, E., Prabhakaran, M.P., Swieszkowski, W., Kurzydlowski, K.J. and Ramakrishna, S., 2012. Electrospun bio-composite (PLLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J. Bio. J Biomed Mater Res B Appl Biomater. 100(4), 1093–1102.
-Klemm, D., Heublein, B. and Fink, H.P., 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22): 3358–3393.
-Kumar, A., Negi, Y.S., Choudhary, V. and Bhardwaj, N.K., 2014. Characterization of cellulose nanocrystals produced by acidhydrolysis from sugarcane bagasse as agro-waste. Materials Physics and Chemistry, 2(1): 1–8.
-Lam, E., Male, K.B., Chong, J.H., Leung, A.C.W. and Luong, J.H.T., 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5): 283–290.
-Lavoine, N., Desloges, I., Dufresne, A. and Bras, J., 2012. Microfibrillated cellulose, their barrier properties and applications in cellulosic materials: a review. Carbohydr, 90(2). 735–748.
-Li, N., Wang, H., Qu, X. and Chen, Y., 2017. Synthesis of poly (norbornene-methylamine), a biomimetic of chitosan, by ring-opening metathesis polymerization (ROMP). Marine Drugs, 15(7). 1–9.
-Liu, X., Souzandeh, H., Zheng, Y., Xie, Y., Zhong, W. H., & Wang, C. 2017. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 138, 124-133.
-Marzbani, P., Resalati, H., Ghasemian, A. and Shakeri, A., 2016. Surface modification of talc particles with phthalimide: study of composite structure and consequences on physical, mechanical, and optical properties of deinked pulp. Bioresource, 11(4): 8720–8738.
-Nair, S.S., Zhu, J.Y., Deng Y. and Ragauskas, A.J., 2013. Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustainable Chemistry & Engineering, 2 (4): 772–780.
-Nazir, M.S, Wahjoedi, B.A., Yussof, A.W. and Abdullah, M.A., 2013. Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. Bioresources, 8(2): 2161–2172.
-Ngadi, N.N. and Lani, S., 2014. Extraction and characterization of cellulose from empty fruit bunch (EFB) fiber. Sciences & Engineering. Vol 68(5). 35–39.
-Pasquini, D., Teixeria, E.D.M., Curvelo, A.A.D.S., Belgacem, M.N. and Dufresne, A., 2008. Surface esterification of cellulose fibres: processing and characterization of low-density polyethylene/ cellulose .Fibers composite. Composite Science and Technology, 68(1): 193– 201.
-Peng, Y., Dong, Y., Fan, H., Chen, P., Li, Z. and Jiang, Q., 2013. Preparation of polysulfone membranes via vapor-induced phase separation and simulation of direct-contact membrane distillation by measuring hydrophobic layer thickness. Desalination, 316: 53–66.
-Rosilo, H., Kontturi, E., Seitsonen, J., Kolehmainen, E. and Ikkala, O., 2013. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol−ene click chemistry. Biomacromolecules, 14 (5). 1547–1554.
-Saljoughi, E., Sadrzadeh, M. and Mohammadi, T., 2009. Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. Membrane Science, 326(2): 627–634.
-Segal, L., Creely, J., Martin, A. and Conrad, C., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research, 29. 786–794.
-Semba, T., Ito, A., Kitagawa, K., Nakatani, T., Yano, H. and Sato, A., 2014. Thermoplastic composites of polyamide-12 reinforced by cellulose nanofibers with cationic surface modification. Applied Polymer Science, 131. 40920–40928.
-Sivakumar, M., Mohan, D.R. and Rangarajan, R., 2006. Studies on cellulose acetate-polysulfone ultrafiltration membranes II. Effect of additive concentration. Membrane Science, 268(2). 208–219.
-Spence, K.L., Venditti, R.A., Rojas, O.J., Habibi, Y., and Pawlak, J.J., 2011. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4). 1097–1013.
-Sun, R., Fang, J., Mott, M.L. and Bolton, J., 1999. Fractional isolation and characterization of polysaccharides from oil palm trunk and empty fruit bunch fibres. Holzforschung, 53(3): 253–260.
-Tian, C., Fu, S., Chen, J., Meng, Q. and Lucia L.A., 2014. Graft polymerization of epsilon-caprolactone to cellulose nanocrystals and optimization of grafting conditions utilizing a response surface methodology. Nordic Pulp & Paper Research Journal (NPPRJ), 29(1): 58–68.
-Wang, X.Q., Zhu, Q., Mahurin, S.M., Liang, C. and Dai, S., 2010. Preparation of free-standing high quality mesoporous carbon membranes. Carbon, 48(2). 557–570.
-Wei, L., McDonald, A.G., Freitag, C. and Morrell, J.J., 2013. Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polymer Degradation Stability, 98(7): 1348–1361.